IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29426-x.html
   My bibliography  Save this article

Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells

Author

Listed:
  • Davide G. Franchina

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Henry Kurniawan

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Melanie Grusdat

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Carole Binsfeld

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Luana Guerra

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Lynn Bonetti

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Leticia Soriano-Baguet

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Anouk Ewen

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Takumi Kobayashi

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Sophie Farinelle

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg)

  • Anna Rita Minafra

    (Heinrich-Heine-University)

  • Niels Vandamme

    (National Data Mining and Modelling for Biomedicine, VIB Center for Inflammation Research
    Ghent University)

  • Anaïs Carpentier

    (National Center of Pathology (NCP), Laboratoire National de Santé (LNS))

  • Felix K. Borgmann

    (National Center of Pathology (NCP), Laboratoire National de Santé (LNS)
    Luxembourg Center of Neuropathology (LCNP))

  • Christian Jäger

    (University of Luxembourg)

  • Ying Chen

    (Department of Environmental Health Sciences, Yale School of Public Health)

  • Markus Kleinewietfeld

    (VIB Center for Inflammation Research (IRC) Hasselt University
    Hasselt University)

  • Vasilis Vasiliou

    (Department of Environmental Health Sciences, Yale School of Public Health)

  • Michel Mittelbronn

    (National Center of Pathology (NCP), Laboratoire National de Santé (LNS)
    Luxembourg Center of Neuropathology (LCNP)
    University of Luxembourg
    University of Luxembourg)

  • Karsten Hiller

    (Technische Universität Braunschweig)

  • Philipp A. Lang

    (Heinrich-Heine-University)

  • Dirk Brenner

    (Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health
    University of Luxembourg
    Odense University Hospital, University of Southern Denmark)

Abstract

The metabolic principles underlying the differences between follicular and marginal zone B cells (FoB and MZB, respectively) are not well understood. Here we show, by studying mice with B cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that glutathione synthesis affects homeostasis and differentiation of MZB to a larger extent than FoB, while glutathione-dependent redox control contributes to the metabolic dependencies of FoB. Specifically, Gclc ablation in FoB induces metabolic features of wild-type MZB such as increased ATP levels, glucose metabolism, mTOR activation, and protein synthesis. Furthermore, Gclc-deficient FoB have a block in the mitochondrial electron transport chain (ETC) due to diminished complex I and II activity and thereby accumulate the tricarboxylic acid cycle metabolite succinate. Finally, Gclc deficiency hampers FoB activation and antibody responses in vitro and in vivo, and induces susceptibility to viral infections. Our results thus suggest that Gclc is required to ensure the development of MZB, the mitochondrial ETC integrity in FoB, and the efficacy of antiviral humoral immunity.

Suggested Citation

  • Davide G. Franchina & Henry Kurniawan & Melanie Grusdat & Carole Binsfeld & Luana Guerra & Lynn Bonetti & Leticia Soriano-Baguet & Anouk Ewen & Takumi Kobayashi & Sophie Farinelle & Anna Rita Minafra , 2022. "Glutathione-dependent redox balance characterizes the distinct metabolic properties of follicular and marginal zone B cells," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29426-x
    DOI: 10.1038/s41467-022-29426-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29426-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29426-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Inmaculada Martínez-Reyes & Navdeep S. Chandel, 2020. "Mitochondrial TCA cycle metabolites control physiology and disease," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Tal I. Arnon & Robert M. Horton & Irina L. Grigorova & Jason G. Cyster, 2013. "Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress," Nature, Nature, vol. 493(7434), pages 684-688, January.
    3. Brian T. Gaudette & Derek D. Jones & Alexandra Bortnick & Yair Argon & David Allman, 2020. "mTORC1 coordinates an immediate unfolded protein response-related transcriptome in activated B cells preceding antibody secretion," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    4. Jason E. Lee & Laura M. Westrate & Haoxi Wu & Cynthia Page & Gia K. Voeltz, 2016. "Multiple dynamin family members collaborate to drive mitochondrial division," Nature, Nature, vol. 540(7631), pages 139-143, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Asantewaa & Emily T. Tuttle & Nathan P. Ward & Yun Pyo Kang & Yumi Kim & Madeline E. Kavanagh & Nomeda Girnius & Ying Chen & Katherine Rodriguez & Fabio Hecht & Marco Zocchi & Leonid Smorodints, 2024. "Glutathione synthesis in the mouse liver supports lipid abundance through NRF2 repression," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Tuğçe Beyazay & Kendra S. Belthle & Christophe Farès & Martina Preiner & Joseph Moran & William F. Martin & Harun Tüysüz, 2023. "Ambient temperature CO2 fixation to pyruvate and subsequently to citramalate over iron and nickel nanoparticles," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    4. Rania El-Botty & Ludivine Morriset & Elodie Montaudon & Zakia Tariq & Anne Schnitzler & Marina Bacci & Nicla Lorito & Laura Sourd & Léa Huguet & Ahmed Dahmani & Pierre Painsec & Heloise Derrien & Soph, 2023. "Oxidative phosphorylation is a metabolic vulnerability of endocrine therapy and palbociclib resistant metastatic breast cancers," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Hao Wu & Xiufeng Zhao & Sophia M. Hochrein & Miriam Eckstein & Gabriela F. Gubert & Konrad Knöpper & Ana Maria Mansilla & Arman Öner & Remi Doucet-Ladevèze & Werner Schmitz & Bart Ghesquière & Sebasti, 2023. "Mitochondrial dysfunction promotes the transition of precursor to terminally exhausted T cells through HIF-1α-mediated glycolytic reprogramming," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Marine Lanfranchi & Sozerko Yandiev & Géraldine Meyer-Dilhet & Salma Ellouze & Martijn Kerkhofs & Raphael Dos Reis & Audrey Garcia & Camille Blondet & Alizée Amar & Anita Kneppers & Hélène Polvèche & , 2024. "The AMPK-related kinase NUAK1 controls cortical axons branching by locally modulating mitochondrial metabolic functions," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    7. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    8. Tao Zhang & Sarah E. Noll & Jesus T. Peng & Amman Klair & Abigail Tripka & Nathan Stutzman & Casey Cheng & Richard N. Zare & Alexandra J. Dickinson, 2023. "Chemical imaging reveals diverse functions of tricarboxylic acid metabolites in root growth and development," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Chujiao Lin & Qiyuan Yang & Dongsheng Guo & Jun Xie & Yeon-Suk Yang & Sachin Chaugule & Ngoc DeSouza & Won-Taek Oh & Rui Li & Zhihao Chen & Aijaz A. John & Qiang Qiu & Lihua Julie Zhu & Matthew B. Gre, 2022. "Impaired mitochondrial oxidative metabolism in skeletal progenitor cells leads to musculoskeletal disintegration," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    10. Tea Babushku & Markus Lechner & Stefanie Ehrenberg & Ursula Rambold & Marc Schmidt-Supprian & Andrew J. Yates & Sanket Rane & Ursula Zimber-Strobl & Lothar J. Strobl, 2024. "Notch2 controls developmental fate choices between germinal center and marginal zone B cells upon immunization," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    11. Zaher ElBeck & Mohammad Bakhtiar Hossain & Humam Siga & Nikolay Oskolkov & Fredrik Karlsson & Julia Lindgren & Anna Walentinsson & Dominique Koppenhöfer & Rebecca Jarvis & Roland Bürli & Tanguy Jamier, 2024. "Epigenetic modulators link mitochondrial redox homeostasis to cardiac function in a sex-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-23, December.
    12. Wennan Zhao & Xue Wang & Lifeng Han & Chunze Zhang & Chenxi Wang & Dexin Kong & Mingzhe Zhang & Tong Xu & Gen Li & Ge Hu & Jiahua Luo & Sook Wah Yee & Jia Yang & Andreas Stahl & Xin Chen & Youcai Zhan, 2024. "SLC13A3 is a major effector downstream of activated β-catenin in liver cancer pathogenesis," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    13. Le Tran Phuc Khoa & Wentao Yang & Mengrou Shan & Li Zhang & Fengbiao Mao & Bo Zhou & Qiang Li & Rebecca Malcore & Clair Harris & Lili Zhao & Rajesh C. Rao & Shigeki Iwase & Sundeep Kalantry & Stephani, 2024. "Quiescence enables unrestricted cell fate in naive embryonic stem cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    14. Ryann M. Fame & Peter N. Kalugin & Boryana Petrova & Huixin Xu & Paul A. Soden & Frederick B. Shipley & Neil Dani & Bradford Grant & Aja Pragana & Joshua P. Head & Suhasini Gupta & Morgan L. Shannon &, 2023. "Defining diurnal fluctuations in mouse choroid plexus and CSF at high molecular, spatial, and temporal resolution," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    15. Clara Cousu & Eléonore Mulot & Annie Smet & Sara Formichetti & Damiana Lecoeuche & Jianke Ren & Kathrin Muegge & Matthieu Boulard & Jean-Claude Weill & Claude-Agnès Reynaud & Sébastien Storck, 2023. "Germinal center output is sustained by HELLS-dependent DNA-methylation-maintenance in B cells," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    16. Fiamma Salerno & Andrew J. M. Howden & Louise S. Matheson & Özge Gizlenci & Michael Screen & Holger Lingel & Monika C. Brunner-Weinzierl & Martin Turner, 2023. "An integrated proteome and transcriptome of B cell maturation defines poised activation states of transitional and mature B cells," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    17. Lanqi Gong & Jie Luo & Yu Zhang & Yuma Yang & Shanshan Li & Xiaona Fang & Baifeng Zhang & Jiao Huang & Larry Ka-Yue Chow & Dittman Chung & Jinlin Huang & Cuicui Huang & Qin Liu & Lu Bai & Yuen Chak Ti, 2023. "Nasopharyngeal carcinoma cells promote regulatory T cell development and suppressive activity via CD70-CD27 interaction," Nature Communications, Nature, vol. 14(1), pages 1-24, December.
    18. Fabiola Diniz & Nguyen Yen Nhi Ngo & Mariel Colon-Leyva & Francesca Edgington-Giordano & Sylvia Hilliard & Kevin Zwezdaryk & Jiao Liu & Samir S. El-Dahr & Giovane G. Tortelote, 2023. "Acetyl-CoA is a key molecule for nephron progenitor cell pool maintenance," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    19. Russell K. W. Spencer & Isaac Santos-Pérez & Izaro Rodríguez-Renovales & Juan Manuel Martinez Galvez & Anna V. Shnyrova & Marcus Müller, 2024. "Membrane fission via transmembrane contact," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    20. Debasmita Bhattacharya & Vicky Shah & Oreoluwa Oresajo & Anthony Scimè, 2021. "p107 mediated mitochondrial function controls muscle stem cell proliferative fates," Nature Communications, Nature, vol. 12(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29426-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.