IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29409-y.html
   My bibliography  Save this article

BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks

Author

Listed:
  • Arun Prakash Mishra

    (National Cancer Institute, National Institutes of Health)

  • Suzanne A. Hartford

    (National Cancer Institute, National Institutes of Health
    Regeneron Pharmaceuticals, Inc)

  • Sounak Sahu

    (National Cancer Institute, National Institutes of Health)

  • Kimberly Klarmann

    (National Cancer Institute, National Institutes of Health
    Division of Cancer Treatment and Diagnosis, NCI)

  • Rajani Kant Chittela

    (National Cancer Institute, National Institutes of Health
    Bhabha Atomic Research Center)

  • Kajal Biswas

    (National Cancer Institute, National Institutes of Health)

  • Albert B. Jeon

    (Inc. Frederick National Laboratory for Cancer Research)

  • Betty K. Martin

    (National Cancer Institute, National Institutes of Health
    Inc. Frederick National Laboratory for Cancer Research)

  • Sandra Burkett

    (National Cancer Institute, National Institutes of Health)

  • Eileen Southon

    (National Cancer Institute, National Institutes of Health)

  • Susan Reid

    (National Cancer Institute, National Institutes of Health)

  • Mary E. Albaugh

    (National Cancer Institute, National Institutes of Health
    Inc. Frederick National Laboratory for Cancer Research)

  • Baktiar Karim

    (Inc. Frederick National Laboratory for Cancer Research)

  • Lino Tessarollo

    (National Cancer Institute, National Institutes of Health)

  • Jonathan R. Keller

    (National Cancer Institute, National Institutes of Health
    Inc. Frederick National Laboratory for Cancer Research)

  • Shyam K. Sharan

    (National Cancer Institute, National Institutes of Health)

Abstract

The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.

Suggested Citation

  • Arun Prakash Mishra & Suzanne A. Hartford & Sounak Sahu & Kimberly Klarmann & Rajani Kant Chittela & Kajal Biswas & Albert B. Jeon & Betty K. Martin & Sandra Burkett & Eileen Southon & Susan Reid & Ma, 2022. "BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29409-y
    DOI: 10.1038/s41467-022-29409-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29409-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29409-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vaibhav Bhatia & Sonia I. Barroso & María L. García-Rubio & Emanuela Tumini & Emilia Herrera-Moyano & Andrés Aguilera, 2014. "BRCA2 prevents R-loop accumulation and associates with TREX-2 mRNA export factor PCID2," Nature, Nature, vol. 511(7509), pages 362-365, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleix Bayona-Feliu & Emilia Herrera-Moyano & Nibal Badra-Fajardo & Iván Galván-Femenía & María Eugenia Soler-Oliva & Andrés Aguilera, 2023. "The chromatin network helps prevent cancer-associated mutagenesis at transcription-replication conflicts," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    2. Yan Wang & Binbin Ma & Xiaoxu Liu & Ge Gao & Zhuanzhuan Che & Menghan Fan & Siyan Meng & Xiru Zhao & Rio Sugimura & Hua Cao & Zhongjun Zhou & Jing Xie & Chengqi Lin & Zhuojuan Luo, 2022. "ZFP281-BRCA2 prevents R-loop accumulation during DNA replication," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Liang Chen & Yucong Wang & Jiamei Lin & Zhenxing Song & Qinwei Wang & Wenfang Zhao & Yan Wang & Xiaoyu Xiu & Yuqi Deng & Xiuzhi Li & Qiqi Li & Xiaolin Wang & Jingxin Li & Xu Liu & Kunpeng Liu & Jincon, 2022. "Exportin 4 depletion leads to nuclear accumulation of a subset of circular RNAs," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. David Rombaut & Carine Lefèvre & Tony Rached & Sabrina Bondu & Anne Letessier & Raphael M. Mangione & Batoul Farhat & Auriane Lesieur-Pasquier & Daisy Castillo-Guzman & Ismael Boussaid & Chloé Friedri, 2024. "Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29409-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.