IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29397-z.html
   My bibliography  Save this article

MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers

Author

Listed:
  • Omar Alhalabi

    (The University of Texas MD Anderson Cancer Center)

  • Jianfeng Chen

    (The University of Texas MD Anderson Cancer Center)

  • Yuxue Zhang

    (The University of Texas MD Anderson Cancer Center)

  • Yang Lu

    (The University of Texas MD Anderson Cancer Center)

  • Qi Wang

    (The University of Texas MD Anderson Cancer Center)

  • Sumankalai Ramachandran

    (The University of Texas MD Anderson Cancer Center)

  • Rebecca Slack Tidwell

    (The University of Texas MD Anderson Cancer Center)

  • Guangchun Han

    (The University of Texas MD Anderson Cancer Center)

  • Xinmiao Yan

    (The University of Texas MD Anderson Cancer Center)

  • Jieru Meng

    (The University of Texas MD Anderson Cancer Center)

  • Ruiping Wang

    (The University of Texas MD Anderson Cancer Center)

  • Anh G. Hoang

    (The University of Texas MD Anderson Cancer Center)

  • Wei-Lien Wang

    (The University of Texas MD Anderson Cancer Center)

  • Jian Song

    (The University of Texas MD Anderson Cancer Center)

  • Lidia Lopez

    (The University of Texas MD Anderson Cancer Center)

  • Alex Andreev-Drakhlin

    (The University of Texas MD Anderson Cancer Center)

  • Arlene Siefker-Radtke

    (The University of Texas MD Anderson Cancer Center)

  • Xinqiao Zhang

    (The University of Texas MD Anderson Cancer Center)

  • William F. Benedict

    (The University of Texas MD Anderson Cancer Center)

  • Amishi Y. Shah

    (The University of Texas MD Anderson Cancer Center)

  • Jennifer Wang

    (The University of Texas MD Anderson Cancer Center)

  • Pavlos Msaouel

    (The University of Texas MD Anderson Cancer Center)

  • Miao Zhang

    (The University of Texas MD Anderson Cancer Center)

  • Charles C. Guo

    (The University of Texas MD Anderson Cancer Center)

  • Bogdan Czerniak

    (The University of Texas MD Anderson Cancer Center)

  • Carmen Behrens

    (The University of Texas MD Anderson Cancer Center)

  • Luisa Soto

    (The University of Texas MD Anderson Cancer Center)

  • Vassiliki Papadimitrakopoulou

    (The University of Texas MD Anderson Cancer Center)

  • Jeff Lewis

    (The University of Texas MD Anderson Cancer Center)

  • Waree Rinsurongkawong

    (The University of Texas MD Anderson Cancer Center)

  • Vadeerat Rinsurongkawong

    (The University of Texas MD Anderson Cancer Center)

  • Jack Lee

    (The University of Texas MD Anderson Cancer Center)

  • Jack Roth

    (The University of Texas MD Anderson Cancer Center)

  • Stephen Swisher

    (The University of Texas MD Anderson Cancer Center)

  • Ignacio Wistuba

    (The University of Texas MD Anderson Cancer Center)

  • John Heymach

    (The University of Texas MD Anderson Cancer Center)

  • Jing Wang

    (The University of Texas MD Anderson Cancer Center)

  • Matthew T. Campbell

    (The University of Texas MD Anderson Cancer Center)

  • Eleni Efstathiou

    (The University of Texas MD Anderson Cancer Center)

  • Mark Titus

    (The University of Texas MD Anderson Cancer Center)

  • Christopher J. Logothetis

    (The University of Texas MD Anderson Cancer Center)

  • Thai H. Ho

    (Mayo Clinic)

  • Jianjun Zhang

    (The University of Texas MD Anderson Cancer Center)

  • Linghua Wang

    (The University of Texas MD Anderson Cancer Center
    The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS))

  • Jianjun Gao

    (The University of Texas MD Anderson Cancer Center)

Abstract

Methylthioadenosine phosphorylase, an essential enzyme for the adenine salvage pathway, is often deficient (MTAPdef) in tumors with 9p21 loss and hypothetically renders tumors susceptible to synthetic lethality by antifolates targeting de novo purine synthesis. Here we report our single arm phase II trial (NCT02693717) that assesses pemetrexed in MTAPdef urothelial carcinoma (UC) with the primary endpoint of overall response rate (ORR). Three of 7 enrolled MTAPdef patients show response to pemetrexed (ORR 43%). Furthermore, a historic cohort shows 4 of 4 MTAPdef patients respond to pemetrexed as compared to 1 of 10 MTAP-proficient patients. In vitro and in vivo preclinical data using UC cell lines demonstrate increased sensitivity to pemetrexed by inducing DNA damage, and distorting nucleotide pools. In addition, MTAP-knockdown increases sensitivity to pemetrexed. Furthermore, in a lung adenocarcinoma retrospective cohort (N = 72) from the published BATTLE2 clinical trial (NCT01248247), MTAPdef associates with an improved response rate to pemetrexed. Our data demonstrate a synthetic lethal interaction between MTAPdef and de novo purine inhibition, which represents a promising therapeutic strategy for larger prospective trials.

Suggested Citation

  • Omar Alhalabi & Jianfeng Chen & Yuxue Zhang & Yang Lu & Qi Wang & Sumankalai Ramachandran & Rebecca Slack Tidwell & Guangchun Han & Xinmiao Yan & Jieru Meng & Ruiping Wang & Anh G. Hoang & Wei-Lien Wa, 2022. "MTAP deficiency creates an exploitable target for antifolate therapy in 9p21-loss cancers," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29397-z
    DOI: 10.1038/s41467-022-29397-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29397-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29397-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J.Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Red, 2012. "Addendum: The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 492(7428), pages 290-290, December.
    2. Jordi Barretina & Giordano Caponigro & Nicolas Stransky & Kavitha Venkatesan & Adam A. Margolin & Sungjoon Kim & Christopher J. Wilson & Joseph Lehár & Gregory V. Kryukov & Dmitriy Sonkin & Anupama Re, 2012. "The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity," Nature, Nature, vol. 483(7391), pages 603-607, March.
    3. Guangchun Han & Guoliang Yang & Dapeng Hao & Yang Lu & Kyaw Thein & Benjamin S. Simpson & Jianfeng Chen & Ryan Sun & Omar Alhalabi & Ruiping Wang & Minghao Dang & Enyu Dai & Shaojun Zhang & Fengqi Nie, 2021. "9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy," Nature Communications, Nature, vol. 12(1), pages 1-19, December.
    4. Thomas Powles & Joseph Paul Eder & Gregg D. Fine & Fadi S. Braiteh & Yohann Loriot & Cristina Cruz & Joaquim Bellmunt & Howard A. Burris & Daniel P. Petrylak & Siew-leng Teng & Xiaodong Shen & Zachary, 2014. "MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer," Nature, Nature, vol. 515(7528), pages 558-562, November.
    5. Rameen Beroukhim & Craig H. Mermel & Dale Porter & Guo Wei & Soumya Raychaudhuri & Jerry Donovan & Jordi Barretina & Jesse S. Boehm & Jennifer Dobson & Mitsuyoshi Urashima & Kevin T. Mc Henry & Reid M, 2010. "The landscape of somatic copy-number alteration across human cancers," Nature, Nature, vol. 463(7283), pages 899-905, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seungyeul Yoo & Abhilasha Sinha & Dawei Yang & Nasser K. Altorki & Radhika Tandon & Wenhui Wang & Deebly Chavez & Eunjee Lee & Ayushi S. Patel & Takashi Sato & Ranran Kong & Bisen Ding & Eric E. Schad, 2022. "Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Alon Stern & Mariam Fokra & Boris Sarvin & Ahmad Abed Alrahem & Won Dong Lee & Elina Aizenshtein & Nikita Sarvin & Tomer Shlomi, 2023. "Inferring mitochondrial and cytosolic metabolism by coupling isotope tracing and deconvolution," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Yanli Liu & Zhong Wu & Jin Zhou & Dinesh K. A. Ramadurai & Katelyn L. Mortenson & Estrella Aguilera-Jimenez & Yifei Yan & Xiaojun Yang & Alison M. Taylor & Katherine E. Varley & Jason Gertz & Peter S., 2021. "A predominant enhancer co-amplified with the SOX2 oncogene is necessary and sufficient for its expression in squamous cancer," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Sayantani Ghosh Dastidar & Bony Kumar & Bo Lauckner & Damien Parrello & Danielle Perley & Maria Vlasenok & Antariksh Tyagi & Nii Koney-Kwaku Koney & Ata Abbas & Sergei Nechaev, 2023. "Transcriptional responses of cancer cells to heat shock-inducing stimuli involve amplification of robust HSF1 binding," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Sumana Srivatsa & Hesam Montazeri & Gaia Bianco & Mairene Coto-Llerena & Mattia Marinucci & Charlotte K. Y. Ng & Salvatore Piscuoglio & Niko Beerenwinkel, 2022. "Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. Lisa Veghini & Davide Pasini & Rui Fang & Pietro Delfino & Dea Filippini & Christian Neander & Caterina Vicentini & Elena Fiorini & Francesca Lupo & Sabrina L. D’Agosto & Carmine Carbone & Antonio Ago, 2024. "Differential activity of MAPK signalling defines fibroblast subtypes in pancreatic cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Felicity J. Ashcroft & Asimina Bourboula & Nur Mahammad & Efrosini Barbayianni & Astrid J. Feuerherm & Thanh Thuy Nguyen & Daiki Hayashi & Maroula G. Kokotou & Konstantinos Alevizopoulos & Edward A. D, 2025. "Next generation thiazolyl ketone inhibitors of cytosolic phospholipase A2 α for targeted cancer therapy," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
    9. Guidantonio Malagoli Tagliazucchi & Anna J. Wiecek & Eloise Withnell & Maria Secrier, 2023. "Genomic and microenvironmental heterogeneity shaping epithelial-to-mesenchymal trajectories in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    10. Souleymane Abdoul-Azize & Rihab Hami & Gaetan Riou & Céline Derambure & Camille Charbonnier & Jean-Pierre Vannier & Monica L. Guzman & Pascale Schneider & Olivier Boyer, 2024. "Glucocorticoids paradoxically promote steroid resistance in B cell acute lymphoblastic leukemia through CXCR4/PLC signaling," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    11. Michael Kugler & Felix J. Metzner & Gregor Witte & Karl-Peter Hopfner & Katja Lammens, 2024. "Phosphorylation-mediated conformational change regulates human SLFN11," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Philip East & Gavin P. Kelly & Dhruva Biswas & Michela Marani & David C. Hancock & Todd Creasy & Kris Sachsenmeier & Charles Swanton & Julian Downward & Sophie de Carné Trécesson, 2022. "RAS oncogenic activity predicts response to chemotherapy and outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Caterina Bartolacci & Cristina Andreani & Gonçalo Vale & Stefano Berto & Margherita Melegari & Anna Colleen Crouch & Dodge L. Baluya & George Kemble & Kurt Hodges & Jacqueline Starrett & Katerina Poli, 2022. "Targeting de novo lipogenesis and the Lands cycle induces ferroptosis in KRAS-mutant lung cancer," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Sanju Sinha & Karina Barbosa & Kuoyuan Cheng & Mark D. M. Leiserson & Prashant Jain & Anagha Deshpande & David M. Wilson & Bríd M. Ryan & Ji Luo & Ze’ev A. Ronai & Joo Sang Lee & Aniruddha J. Deshpand, 2021. "A systematic genome-wide mapping of oncogenic mutation selection during CRISPR-Cas9 genome editing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    15. Carolin Ector & Christoph Schmal & Jeff Didier & Sébastien De Landtsheer & Anna-Marie Finger & Francesca Müller-Marquardt & Johannes H. Schulte & Thomas Sauter & Ulrich Keilholz & Hanspeter Herzel & A, 2024. "Time-of-day effects of cancer drugs revealed by high-throughput deep phenotyping," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    16. Zheqi Li & Olivia McGinn & Yang Wu & Amir Bahreini & Nolan M. Priedigkeit & Kai Ding & Sayali Onkar & Caleb Lampenfeld & Carol A. Sartorius & Lori Miller & Margaret Rosenzweig & Ofir Cohen & Nikhil Wa, 2022. "ESR1 mutant breast cancers show elevated basal cytokeratins and immune activation," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    17. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.
    18. Hao Wang & R. Alejandro Sica & Gurbakhash Kaur & Phillip M. Galbo & Zhixin Jing & Christopher D. Nishimura & Xiaoxin Ren & Ankit Tanwar & Bijan Etemad-Gilbertson & Britta Will & Deyou Zheng & David Fo, 2024. "TMIGD2 is an orchestrator and therapeutic target on human acute myeloid leukemia stem cells," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Ozge Saatci & Metin Cetin & Meral Uner & Unal Metin Tokat & Ioulia Chatzistamou & Pelin Gulizar Ersan & Elodie Montaudon & Aytekin Akyol & Sercan Aksoy & Aysegul Uner & Elisabetta Marangoni & Mathew S, 2023. "Toxic PARP trapping upon cAMP-induced DNA damage reinstates the efficacy of endocrine therapy and CDK4/6 inhibitors in treatment-refractory ER+ breast cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    20. Tanaz Sharifnia & Mathias J. Wawer & Amy Goodale & Yenarae Lee & Mariya Kazachkova & Joshua M. Dempster & Sandrine Muller & Joan Levy & Daniel M. Freed & Josh Sommer & Jérémie Kalfon & Francisca Vazqu, 2023. "Mapping the landscape of genetic dependencies in chordoma," Nature Communications, Nature, vol. 14(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29397-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.