IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29055-4.html
   My bibliography  Save this article

Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models

Author

Listed:
  • Felipe Quiero

    (Universidad de Concepción, Facultad de Ciencias Químicas, Doctorate Program in Geological Sciences)

  • Andrés Tassara

    (Universidad de Concepción, Facultad de Ciencias Químicas, Departamento Ciencias de la Tierra
    Millenium Nucleus CYCLO “The Seismic Cycle along Subduction Zones”)

  • Giampiero Iaffaldano

    (University of Copenhagen, Department of Geosciences and Natural Resource Management)

  • Osvaldo Rabbia

    (Universidad de Concepción, Instituto de Geología Económica Aplicada)

Abstract

The Andean cordillera was constructed during compressive tectonic events, whose causes and controls remain unclear. Exploring a possible link to plate convergence has been impeded by the coarse temporal resolution of existing plate kinematic models. Here we show that the Neogene evolution of the Andean margin is primarily related to changes in convergence as observed in new high-resolution plate reconstructions. Building on a compilation of plate finite rotations spanning the last 30 million years and using noise-mitigation techniques, we predict several short-term convergence changes that were unresolved in previous models. These changes are related to main tectono-magmatic events and require forces that are compatible with a range of geodynamic processes. These results allow to revise models of ongoing subduction orogeny at its type locality, emphasizing the role of upper plate deformation in the balance between kinematic energy associated with plate motion and gravitational potential energy stored in orogenic crustal roots.

Suggested Citation

  • Felipe Quiero & Andrés Tassara & Giampiero Iaffaldano & Osvaldo Rabbia, 2022. "Growth of Neogene Andes linked to changes in plate convergence using high-resolution kinematic models," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29055-4
    DOI: 10.1038/s41467-022-29055-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29055-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29055-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yi-Wei Chen & Jonny Wu & John Suppe, 2019. "Southward propagation of Nazca subduction along the Andes," Nature, Nature, vol. 565(7740), pages 441-447, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido M. Gianni & César R. Navarrete, 2022. "Catastrophic slab loss in southwestern Pangea preserved in the mantle and igneous record," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Jiashun Hu & Lijun Liu & Michael Gurnis, 2021. "Southward expanding plate coupling due to variation in sediment subduction as a cause of Andean growth," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Guido M. Gianni & Jeremías Likerman & César R. Navarrete & Conrado R. Gianni & Sergio Zlotnik, 2023. "Ghost-arc geochemical anomaly at a spreading ridge caused by supersized flat subduction," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Cody C. Mason & Brian W. Romans & Molly O. Patterson & Daniel F. Stockli & Andrea Fildani, 2022. "Cycles of Andean mountain building archived in the Amazon Fan," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29055-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.