IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-29004-1.html
   My bibliography  Save this article

Trade-off between reducing mutational accumulation and increasing commitment to differentiation determines tissue organization

Author

Listed:
  • Márton Demeter

    (Eötvös University
    ELTE-MTA “Lendület” Evolutionary Genomics Research Group)

  • Imre Derényi

    (Eötvös University
    ELTE-MTA Statistical and Biological Physics Research Group, Eötvös University)

  • Gergely J. Szöllősi

    (Eötvös University
    ELTE-MTA “Lendület” Evolutionary Genomics Research Group
    Institute of Evolution, Centre for Ecological Research)

Abstract

Species-specific differences control cancer risk across orders of magnitude variation in body size and lifespan, e.g., by varying the copy numbers of tumor suppressor genes. It is unclear, however, how different tissues within an organism can control somatic evolution despite being subject to markedly different constraints, but sharing the same genome. Hierarchical differentiation, characteristic of self-renewing tissues, can restrain somatic evolution both by limiting divisional load, thereby reducing mutation accumulation, and by increasing cells’ commitment to differentiation, which can “wash out” mutants. Here, we explore the organization of hierarchical tissues that have evolved to limit their lifetime incidence of cancer. Estimating the likelihood of cancer in the presence of mutations that enhance self-proliferation, we demonstrate that a trade-off exists between mutation accumulation and the strength of washing out. Our results explain differences in the organization of widely different hierarchical tissues, such as colon and blood.

Suggested Citation

  • Márton Demeter & Imre Derényi & Gergely J. Szöllősi, 2022. "Trade-off between reducing mutational accumulation and increasing commitment to differentiation determines tissue organization," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29004-1
    DOI: 10.1038/s41467-022-29004-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-29004-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-29004-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Henry Lee-Six & Nina Friesgaard Øbro & Mairi S. Shepherd & Sebastian Grossmann & Kevin Dawson & Miriam Belmonte & Robert J. Osborne & Brian J. P. Huntly & Inigo Martincorena & Elizabeth Anderson & Lau, 2018. "Population dynamics of normal human blood inferred from somatic mutations," Nature, Nature, vol. 561(7724), pages 473-478, September.
    2. Laila Ritsma & Saskia I. J. Ellenbroek & Anoek Zomer & Hugo J. Snippert & Frederic J. de Sauvage & Benjamin D. Simons & Hans Clevers & Jacco van Rheenen, 2014. "Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging," Nature, Nature, vol. 507(7492), pages 362-365, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yael Korem & Pablo Szekely & Yuval Hart & Hila Sheftel & Jean Hausser & Avi Mayo & Michael E Rothenberg & Tomer Kalisky & Uri Alon, 2015. "Geometry of the Gene Expression Space of Individual Cells," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-27, July.
    2. Kitty Sherwood & Joseph C. Ward & Ignacio Soriano & Lynn Martin & Archie Campbell & Raheleh Rahbari & Ioannis Kafetzopoulos & Duncan Sproul & Andrew Green & Julian R. Sampson & Alan Donaldson & Kai-Re, 2023. "Germline de novo mutations in families with Mendelian cancer syndromes caused by defects in DNA repair," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Makoto Takeo & Koh-ei Toyoshima & Riho Fujimoto & Tomoyo Iga & Miki Takase & Miho Ogawa & Takashi Tsuji, 2023. "Cyclical dermal micro-niche switching governs the morphological infradian rhythm of mouse zigzag hair," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Chiao-Peng Hsu & Alfredo Sciortino & Yu Alice Trobe & Andreas R. Bausch, 2022. "Activity-induced polar patterns of filaments gliding on a sphere," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Philip S. Robinson & Laura E. Thomas & Federico Abascal & Hyunchul Jung & Luke M. R. Harvey & Hannah D. West & Sigurgeir Olafsson & Bernard C. H. Lee & Tim H. H. Coorens & Henry Lee-Six & Laura Butlin, 2022. "Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Heather E. Machado & Nina F. Øbro & Nicholas Williams & Shengjiang Tan & Ahmed Z. Boukerrou & Megan Davies & Miriam Belmonte & Emily Mitchell & E. Joanna Baxter & Nicole Mende & Anna Clay & Philip Anc, 2023. "Convergent somatic evolution commences in utero in a germline ribosomopathy," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    7. Shamir Montazid & Sheila Bandyopadhyay & Daniel W. Hart & Nan Gao & Brian Johnson & Sri G. Thrumurthy & Dustin J. Penn & Bettina Wernisch & Mukesh Bansal & Philipp M. Altrock & Fabian Rost & Patrycja , 2023. "Adult stem cell activity in naked mole rats for long-term tissue maintenance," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    8. Szu-Hsien Sam Wu & Somi Kim & Heetak Lee & Ji-Hyun Lee & So-Yeon Park & Réka Bakonyi & Isaree Teriyapirom & Natalia Hallay & Sandra Pilat-Carotta & Hans-Christian Theussl & Jihoon Kim & Joo-Hyeon Lee , 2024. "Red2Flpe-SCON: a versatile, multicolor strategy for generating mosaic conditional knockout mice," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-29004-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.