IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28946-w.html
   My bibliography  Save this article

An open-like conformation of the sigma-1 receptor reveals its ligand entry pathway

Author

Listed:
  • Fuhui Meng

    (West China Hospital, Sichuan University)

  • Yang Xiao

    (West China Hospital, Sichuan University)

  • Yujia Ji

    (West China Hospital, Sichuan University)

  • Ziyi Sun

    (West China Hospital, Sichuan University)

  • Xiaoming Zhou

    (West China Hospital, Sichuan University)

Abstract

The sigma-1 receptor (σ1R) is a non-opioid transmembrane receptor which has been implicated in many diseases, including neurodegenerative disorders and cancer. After more than forty years of research, substantial progress has been made in understanding this unique receptor, yet the molecular mechanism of its ligand entry pathway remains uncertain. Published structures of human σ1R reveal its homotrimeric organization of a cupin-fold β-barrel body that contains the ligand binding site, a carboxy-terminal V-shaped two-helix bundle, and a single amino-terminal transmembrane helix, while simulation studies have suggested a ligand entry pathway that is generated by conformational rearrangements of the cupin-fold domain. Here, we present multiple crystal structures, including an open-like conformation, of σ1R from Xenopus laevis. Together with functional binding analysis our data suggest that access to the σ1R ligand binding site is likely achieved by protein conformational changes that involve the carboxy-terminal two-helix bundle, rather than structural changes in the cupin-fold domain.

Suggested Citation

  • Fuhui Meng & Yang Xiao & Yujia Ji & Ziyi Sun & Xiaoming Zhou, 2022. "An open-like conformation of the sigma-1 receptor reveals its ligand entry pathway," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28946-w
    DOI: 10.1038/s41467-022-28946-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28946-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28946-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiaoming Zhou & Elena J. Levin & Yaping Pan & Jason G. McCoy & Ruchika Sharma & Brian Kloss & Renato Bruni & Matthias Quick & Ming Zhou, 2014. "Structural basis of the alternating-access mechanism in a bile acid transporter," Nature, Nature, vol. 505(7484), pages 569-573, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chunting Fu & Yang Xiao & Xiaoming Zhou & Ziyi Sun, 2024. "Insight into binding of endogenous neurosteroid ligands to the sigma-1 receptor," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Zhang & Yuhan Jiang & Kaifu Gao & Dexin Sui & Peixuan Yu & Min Su & Guo-Wei Wei & Jian Hu, 2023. "Structural insights into the elevator-type transport mechanism of a bacterial ZIP metal transporter," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Yongzhen Liu & Thomas R. Cafiero & Debby Park & Abhishek Biswas & Benjamin Y. Winer & Cheul H. Cho & Yaron Bram & Vasuretha Chandar & Aoife K. O’ Connell & Hans P. Gertje & Nicholas Crossland & Robert, 2023. "Targeted viral adaptation generates a simian-tropic hepatitis B virus that infects marmoset cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    3. Martin F. Peter & Jan A. Ruland & Peer Depping & Niels Schneberger & Emmanuele Severi & Jonas Moecking & Karl Gatterdam & Sarah Tindall & Alexandre Durand & Veronika Heinz & Jan Peter Siebrasse & Paul, 2022. "Structural and mechanistic analysis of a tripartite ATP-independent periplasmic TRAP transporter," Nature Communications, Nature, vol. 13(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28946-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.