IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28731-9.html
   My bibliography  Save this article

Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools

Author

Listed:
  • Trystan Leng

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

  • Edward M. Hill

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

  • Alex Holmes

    (University of Warwick
    University of Warwick)

  • Emma Southall

    (University of Warwick
    University of Warwick)

  • Robin N. Thompson

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

  • Michael J. Tildesley

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

  • Matt J. Keeling

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

  • Louise Dyson

    (University of Warwick
    JUNIPER – Joint UNIversities Pandemic and Epidemiological Research)

Abstract

A range of measures have been implemented to control within-school SARS-CoV-2 transmission in England, including the self-isolation of close contacts and twice weekly mass testing of secondary school pupils using lateral flow device tests (LFTs). Despite reducing transmission, isolating close contacts can lead to high levels of absences, negatively impacting pupils. To quantify pupil-to-pupil SARS-CoV-2 transmission and the impact of implemented control measures, we fit a stochastic individual-based model of secondary school infection to both swab testing data and secondary school absences data from England, and then simulate outbreaks from 31st August 2020 until 23rd May 2021. We find that the pupil-to-pupil reproduction number, Rschool, has remained below 1 on average across the study period, and that twice weekly mass testing using LFTs has helped to control pupil-to-pupil transmission. We also explore the potential benefits of alternative containment strategies, finding that a strategy of repeat testing of close contacts rather than isolation, alongside mass testing, substantially reduces absences with only a marginal increase in pupil-to-pupil transmission.

Suggested Citation

  • Trystan Leng & Edward M. Hill & Alex Holmes & Emma Southall & Robin N. Thompson & Michael J. Tildesley & Matt J. Keeling & Louise Dyson, 2022. "Quantifying pupil-to-pupil SARS-CoV-2 transmission and the impact of lateral flow testing in English secondary schools," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28731-9
    DOI: 10.1038/s41467-022-28731-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28731-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28731-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ganna Rozhnova & Christiaan H. Dorp & Patricia Bruijning-Verhagen & Martin C. J. Bootsma & Janneke H. H. M. Wijgert & Marc J. M. Bonten & Mirjam E. Kretzschmar, 2021. "Model-based evaluation of school- and non-school-related measures to control the COVID-19 pandemic," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sylvia Richardson, 2022. "Statistics in times of increasing uncertainty," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1471-1496, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab K Ghosh & Sara Venkatraman & Evgeniya Reshetnyak & Mangala Rajan & Anjile An & John K Chae & Mark A Unruh & David Abramson & Charles DiMaggio & Nathaniel Hupert, 2022. "Association between city-wide lockdown and COVID-19 hospitalization rates in multigenerational households in New York City," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-13, March.
    2. Maira Aguiar & Giovanni Dosi & Damian A. Knopoff & Maria Enrica Virgillito, 2021. "A multiscale network-based model of contagion dynamics: heterogeneity, spatial distancing and vaccination," LEM Papers Series 2021/24, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    3. Otilia Boldea & Adriana Cornea-Madeira & João Madeira, 2023. "Disentangling the effect of measures, variants, and vaccines on SARS-CoV-2 infections in England: a dynamic intensity model," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 444-466.
    4. Christiaan H. van Dorp & Emma E. Goldberg & Nick Hengartner & Ruian Ke & Ethan O. Romero-Severson, 2021. "Estimating the strength of selection for new SARS-CoV-2 variants," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28731-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.