IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28494-3.html
   My bibliography  Save this article

A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals

Author

Listed:
  • Zheni Zeng

    (Tsinghua University)

  • Yuan Yao

    (Tsinghua University)

  • Zhiyuan Liu

    (Tsinghua University)

  • Maosong Sun

    (Tsinghua University)

Abstract

To accelerate biomedical research process, deep-learning systems are developed to automatically acquire knowledge about molecule entities by reading large-scale biomedical data. Inspired by humans that learn deep molecule knowledge from versatile reading on both molecule structure and biomedical text information, we propose a knowledgeable machine reading system that bridges both types of information in a unified deep-learning framework for comprehensive biomedical research assistance. We solve the problem that existing machine reading models can only process different types of data separately, and thus achieve a comprehensive and thorough understanding of molecule entities. By grasping meta-knowledge in an unsupervised fashion within and across different information sources, our system can facilitate various real-world biomedical applications, including molecular property prediction, biomedical relation extraction and so on. Experimental results show that our system even surpasses human professionals in the capability of molecular property comprehension, and also reveal its promising potential in facilitating automatic drug discovery and documentation in the future.

Suggested Citation

  • Zheni Zeng & Yuan Yao & Zhiyuan Liu & Maosong Sun, 2022. "A deep-learning system bridging molecule structure and biomedical text with comprehension comparable to human professionals," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28494-3
    DOI: 10.1038/s41467-022-28494-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28494-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28494-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eugen Lounkine & Michael J. Keiser & Steven Whitebread & Dmitri Mikhailov & Jacques Hamon & Jeremy L. Jenkins & Paul Lavan & Eckhard Weber & Allison K. Doak & Serge Côté & Brian K. Shoichet & Laszlo U, 2012. "Large-scale prediction and testing of drug activity on side-effect targets," Nature, Nature, vol. 486(7403), pages 361-367, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo Jun Tan & Siew Chin Neoh & Chee Peng Lim & Samer Hanoun & Wai Peng Wong & Chu Kong Loo & Li Zhang & Saeid Nahavandi, 2019. "Application of an evolutionary algorithm-based ensemble model to job-shop scheduling," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 879-890, February.
    2. Armaghan W Naik & Joshua D Kangas & Christopher J Langmead & Robert F Murphy, 2013. "Efficient Modeling and Active Learning Discovery of Biological Responses," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
    3. Qiyao Luo & Liang Zhao & Jianxing Hu & Hongwei Jin & Zhenming Liu & Liangren Zhang, 2017. "The scoring bias in reverse docking and the score normalization strategy to improve success rate of target fishing," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-19, February.
    4. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Ruibo Zhang & Daniel Nolte & Cesar Sanchez-Villalobos & Souparno Ghosh & Ranadip Pal, 2024. "Topological regression as an interpretable and efficient tool for quantitative structure-activity relationship modeling," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Julian E Fuchs & Susanne von Grafenstein & Roland G Huber & Christian Kramer & Klaus R Liedl, 2013. "Substrate-Driven Mapping of the Degradome by Comparison of Sequence Logos," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-15, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28494-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.