IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28486-3.html
   My bibliography  Save this article

Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals

Author

Listed:
  • Dmitry Lapkin

    (Deutsches Elektronen-Synchrotron DESY)

  • Christopher Kirsch

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen)

  • Jonas Hiller

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen)

  • Denis Andrienko

    (Max Planck Institute for Polymer Research)

  • Dameli Assalauova

    (Deutsches Elektronen-Synchrotron DESY)

  • Kai Braun

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen)

  • Jerome Carnis

    (Deutsches Elektronen-Synchrotron DESY)

  • Young Yong Kim

    (Deutsches Elektronen-Synchrotron DESY)

  • Mukunda Mandal

    (Max Planck Institute for Polymer Research)

  • Andre Maier

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen
    Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen)

  • Alfred J. Meixner

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen
    Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen)

  • Nastasia Mukharamova

    (Deutsches Elektronen-Synchrotron DESY)

  • Marcus Scheele

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen
    Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen)

  • Frank Schreiber

    (Center for Light-Matter Interaction, Sensors & Analytics LISA+, Universität Tübingen
    Institut für Angewandte Physik, Universität Tübingen)

  • Michael Sprung

    (Deutsches Elektronen-Synchrotron DESY)

  • Jan Wahl

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen)

  • Sophia Westendorf

    (Institut für Physikalische und Theoretische Chemie, Universität Tübingen)

  • Ivan A. Zaluzhnyy

    (Institut für Angewandte Physik, Universität Tübingen)

  • Ivan A. Vartanyants

    (Deutsches Elektronen-Synchrotron DESY
    National Research Nuclear University MEPhI (Moscow Engineering Physics Institute))

Abstract

We correlate spatially resolved fluorescence (-lifetime) measurements with X-ray nanodiffraction to reveal surface defects in supercrystals of self-assembled cesium lead halide perovskite nanocrystals and study their effect on the fluorescence properties. Upon comparison with density functional modeling, we show that a loss in structural coherence, an increasing atomic misalignment between adjacent nanocrystals, and growing compressive strain near the surface of the supercrystal are responsible for the observed fluorescence blueshift and decreased fluorescence lifetimes. Such surface defect-related optical properties extend the frequently assumed analogy between atoms and nanocrystals as so-called quasi-atoms. Our results emphasize the importance of minimizing strain during the self-assembly of perovskite nanocrystals into supercrystals for lighting application such as superfluorescent emitters.

Suggested Citation

  • Dmitry Lapkin & Christopher Kirsch & Jonas Hiller & Denis Andrienko & Dameli Assalauova & Kai Braun & Jerome Carnis & Young Yong Kim & Mukunda Mandal & Andre Maier & Alfred J. Meixner & Nastasia Mukha, 2022. "Spatially resolved fluorescence of caesium lead halide perovskite supercrystals reveals quasi-atomic behavior of nanocrystals," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28486-3
    DOI: 10.1038/s41467-022-28486-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28486-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28486-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ihor Cherniukh & Gabriele Rainò & Thilo Stöferle & Max Burian & Alex Travesset & Denys Naumenko & Heinz Amenitsch & Rolf Erni & Rainer F. Mahrt & Maryna I. Bodnarchuk & Maksym V. Kovalenko, 2021. "Perovskite-type superlattices from lead halide perovskite nanocubes," Nature, Nature, vol. 593(7860), pages 535-542, May.
    2. Florian Fetzer & Andre Maier & Martin Hodas & Olympia Geladari & Kai Braun & Alfred J. Meixner & Frank Schreiber & Andreas Schnepf & Marcus Scheele, 2020. "Structural order enhances charge carrier transport in self-assembled Au-nanoclusters," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Justin G. Bohnet & Zilong Chen & Joshua M. Weiner & Dominic Meiser & Murray J. Holland & James K. Thompson, 2012. "A steady-state superradiant laser with less than one intracavity photon," Nature, Nature, vol. 484(7392), pages 78-81, April.
    4. Ding-Jiang Xue & Yi Hou & Shun-Chang Liu & Mingyang Wei & Bin Chen & Ziru Huang & Zongbao Li & Bin Sun & Andrew H. Proppe & Yitong Dong & Makhsud I. Saidaminov & Shana O. Kelley & Jin-Song Hu & Edward, 2020. "Regulating strain in perovskite thin films through charge-transport layers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    5. Matteo Cargnello & Aaron C. Johnston-Peck & Benjamin T. Diroll & Eric Wong & Bianca Datta & Divij Damodhar & Vicky V. T. Doan-Nguyen & Andrew A. Herzing & Cherie R. Kagan & Christopher B. Murray, 2015. "Substitutional doping in nanocrystal superlattices," Nature, Nature, vol. 524(7566), pages 450-453, August.
    6. Nuri Yazdani & Maximilian Jansen & Deniz Bozyigit & Weyde M. M. Lin & Sebastian Volk & Olesya Yarema & Maksym Yarema & Fanni Juranyi & Sebastian D. Huber & Vanessa Wood, 2019. "Nanocrystal superlattices as phonon-engineered solids and acoustic metamaterials," Nature Communications, Nature, vol. 10(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Shujie & Xu, He-Guang & Liu, Xueying & Xianlong, Gao, 2022. "Quantum criticality driven by the cavity coupling in the Rabi-dimer model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    2. Mengwei Zhou & Ping Huang & Xiaoying Shang & Ruihuan Zhang & Wen Zhang & Zhiqing Shao & Shuo Zhang & Wei Zheng & Xueyuan Chen, 2024. "Ultrafast upconversion superfluorescence with a sub-2.5 ns lifetime at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Stuart J. Masson & Ana Asenjo-Garcia, 2022. "Universality of Dicke superradiance in arrays of quantum emitters," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    4. Xinlong Wang & Zhiqin Ying & Jingming Zheng & Xin Li & Zhipeng Zhang & Chuanxiao Xiao & Ying Chen & Ming Wu & Zhenhai Yang & Jingsong Sun & Jia-Ru Xu & Jiang Sheng & Yuheng Zeng & Xi Yang & Guichuan X, 2023. "Long-chain anionic surfactants enabling stable perovskite/silicon tandems with greatly suppressed stress corrosion," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Eliot A. Bohr & Sofus L. Kristensen & Christoph Hotter & Stefan A. Schäffer & Julian Robinson-Tait & Jan W. Thomsen & Tanya Zelevinsky & Helmut Ritsch & Jörg H. Müller, 2024. "Collectively enhanced Ramsey readout by cavity sub- to superradiant transition," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    6. Lingju Meng & Xihua Wang, 2022. "Doping Colloidal Quantum Dot Materials and Devices for Photovoltaics," Energies, MDPI, vol. 15(7), pages 1-29, March.
    7. Yilong Zhou & Gaurav Arya, 2022. "Discovery of two-dimensional binary nanoparticle superlattices using global Monte Carlo optimization," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28486-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.