IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28190-2.html
   My bibliography  Save this article

NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model

Author

Listed:
  • Guangjian Qi

    (Huazhong University of Science and Technology
    Shaanxi University of Chinese Medicine
    Shaanxi University of Chinese Medicine)

  • Pei Zhang

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology
    Key Laboratory of Neurological Diseases, Ministry of Education)

  • Tongxia Li

    (Huazhong University of Science and Technology)

  • Ming Li

    (Huazhong University of Science and Technology)

  • Qian Zhang

    (Huazhong University of Science and Technology)

  • Feng He

    (Huazhong University of Science and Technology)

  • Lijun Zhang

    (Huazhong University of Science and Technology)

  • Hongwei Cai

    (Huazhong University of Science and Technology)

  • Xinyuan Lv

    (Huazhong University of Science and Technology)

  • Haifa Qiao

    (Shaanxi University of Chinese Medicine
    Shaanxi University of Chinese Medicine)

  • Xiaoqian Chen

    (Huazhong University of Science and Technology
    Key Laboratory of Neurological Diseases, Ministry of Education
    Huazhong University of Science and Technology)

  • Jie Ming

    (Union Hospital, Huazhong University of Science and Technology)

  • Bo Tian

    (Huazhong University of Science and Technology
    Huazhong University of Science and Technology
    Key Laboratory of Neurological Diseases, Ministry of Education)

Abstract

Emotional stress is considered a severe pathogenetic factor of psychiatric disorders. However, the circuit mechanisms remain largely unclear. Using a three-chamber vicarious social defeat stress (3C-VSDS) model in mice, we here show that chronic emotional stress (CES) induces anxiety-like behavior and transient social interaction changes. Dopaminergic neurons of ventral tegmental area (VTA) are required to control this behavioral deficit. VTA dopaminergic neuron hyperactivity induced by CES is involved in the anxiety-like behavior in the innate anxiogenic environment. Chemogenetic activation of VTA dopaminergic neurons directly triggers anxiety-like behavior, while chemogenetic inhibition of these neurons promotes resilience to the CES-induced anxiety-like behavior. Moreover, VTA dopaminergic neurons receiving nucleus accumbens (NAc) projections are activated in CES mice. Bidirectional modulation of the NAc-VTA circuit mimics or reverses the CES-induced anxiety-like behavior. In conclusion, we propose that a NAc-VTA circuit critically establishes and regulates the CES-induced anxiety-like behavior. This study not only characterizes a preclinical model that is representative of the nuanced aspect of CES, but also provides insight to the circuit-level neuronal processes that underlie empathy-like behavior.

Suggested Citation

  • Guangjian Qi & Pei Zhang & Tongxia Li & Ming Li & Qian Zhang & Feng He & Lijun Zhang & Hongwei Cai & Xinyuan Lv & Haifa Qiao & Xiaoqian Chen & Jie Ming & Bo Tian, 2022. "NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28190-2
    DOI: 10.1038/s41467-022-28190-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28190-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28190-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ming-Dao Mu & Hong-Yan Geng & Kang-Lin Rong & Rong-Chao Peng & Shu-Ting Wang & Lin-Ting Geng & Zhong-Ming Qian & Wing-Ho Yung & Ya Ke, 2020. "A limbic circuitry involved in emotional stress-induced grooming," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Radhika Rawat & Elif Tunc-Ozcan & Tammy L. McGuire & Chian-Yu Peng & John A. Kessler, 2022. "Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Dylan C. M. Yeates & Dallas Leavitt & Sajeevan Sujanthan & Nisma Khan & Denada Alushaj & Andy C. H. Lee & Rutsuko Ito, 2022. "Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Yun-Feng Zhang & Jialiang Wu & Yingqi Wang & Natalie L. Johnson & Janardhan P. Bhattarai & Guanqing Li & Wenqiang Wang & Camilo Guevara & Hannah Shoenhard & Marc V. Fuccillo & Daniel W. Wesson & Mingh, 2023. "Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Matthew Baker & Seungwoo Kang & Sa-Ik Hong & Minryung Song & Minsu Abel Yang & Lee Peyton & Hesham Essa & Sang Wan Lee & Doo-Sup Choi, 2023. "External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Blake J. Laham & Sahana S. Murthy & Monica Hanani & Mona Clappier & Sydney Boyer & Betsy Vasquez & Elizabeth Gould, 2022. "The estrous cycle modulates early-life adversity effects on mouse avoidance behavior through progesterone signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28190-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.