IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-16203-x.html
   My bibliography  Save this article

A limbic circuitry involved in emotional stress-induced grooming

Author

Listed:
  • Ming-Dao Mu

    (The Chinese University of Hong Kong, Shatin, NT)

  • Hong-Yan Geng

    (The Chinese University of Hong Kong, Shatin, NT)

  • Kang-Lin Rong

    (The Chinese University of Hong Kong, Shatin, NT)

  • Rong-Chao Peng

    (The Chinese University of Hong Kong, Shatin, NT)

  • Shu-Ting Wang

    (The Chinese University of Hong Kong, Shatin, NT)

  • Lin-Ting Geng

    (The Chinese University of Hong Kong, Shatin, NT)

  • Zhong-Ming Qian

    (Fudan University)

  • Wing-Ho Yung

    (The Chinese University of Hong Kong, Shatin, NT
    The Chinese University of Hong Kong, Shatin, NT)

  • Ya Ke

    (The Chinese University of Hong Kong, Shatin, NT
    The Chinese University of Hong Kong, Shatin, NT)

Abstract

Prolonged exposure to negative stressors could be harmful if a subject cannot respond appropriately. Strategies evolved to respond to stress, including repetitive displacement behaviours, are important in maintaining behavioural homoeostasis. In rodents, self-grooming is a frequently observed repetitive behaviour believed to contribute to post-stress de-arousal with adaptive value. Here we identified a rat limbic di-synaptic circuit that regulates stress-induced self-grooming with positive affective valence. This circuit links hippocampal ventral subiculum to ventral lateral septum (LSv) and then lateral hypothalamus tuberal nucleus. Optogenetic activation of this circuit triggers delayed but robust excessive grooming with patterns closely resembling those evoked by emotional stress. Consistently, the neural activity of LSv reaches a peak before emotional stress-induced grooming while inhibition of this circuit significantly suppresses grooming triggered by emotional stress. Our results uncover a previously unknown limbic circuitry involved in regulating stress-induced self-grooming and pinpoint a critical role of LSv in this ethologically important behaviour.

Suggested Citation

  • Ming-Dao Mu & Hong-Yan Geng & Kang-Lin Rong & Rong-Chao Peng & Shu-Ting Wang & Lin-Ting Geng & Zhong-Ming Qian & Wing-Ho Yung & Ya Ke, 2020. "A limbic circuitry involved in emotional stress-induced grooming," Nature Communications, Nature, vol. 11(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16203-x
    DOI: 10.1038/s41467-020-16203-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-16203-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-16203-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Radhika Rawat & Elif Tunc-Ozcan & Tammy L. McGuire & Chian-Yu Peng & John A. Kessler, 2022. "Ketamine activates adult-born immature granule neurons to rapidly alleviate depression-like behaviors in mice," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Blake J. Laham & Sahana S. Murthy & Monica Hanani & Mona Clappier & Sydney Boyer & Betsy Vasquez & Elizabeth Gould, 2022. "The estrous cycle modulates early-life adversity effects on mouse avoidance behavior through progesterone signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Yun-Feng Zhang & Jialiang Wu & Yingqi Wang & Natalie L. Johnson & Janardhan P. Bhattarai & Guanqing Li & Wenqiang Wang & Camilo Guevara & Hannah Shoenhard & Marc V. Fuccillo & Daniel W. Wesson & Mingh, 2023. "Ventral striatal islands of Calleja neurons bidirectionally mediate depression-like behaviors in mice," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    4. Matthew Baker & Seungwoo Kang & Sa-Ik Hong & Minryung Song & Minsu Abel Yang & Lee Peyton & Hesham Essa & Sang Wan Lee & Doo-Sup Choi, 2023. "External globus pallidus input to the dorsal striatum regulates habitual seeking behavior in male mice," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    5. Guangjian Qi & Pei Zhang & Tongxia Li & Ming Li & Qian Zhang & Feng He & Lijun Zhang & Hongwei Cai & Xinyuan Lv & Haifa Qiao & Xiaoqian Chen & Jie Ming & Bo Tian, 2022. "NAc-VTA circuit underlies emotional stress-induced anxiety-like behavior in the three-chamber vicarious social defeat stress mouse model," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    6. Dylan C. M. Yeates & Dallas Leavitt & Sajeevan Sujanthan & Nisma Khan & Denada Alushaj & Andy C. H. Lee & Rutsuko Ito, 2022. "Parallel ventral hippocampus-lateral septum pathways differentially regulate approach-avoidance conflict," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-16203-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.