IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28132-y.html
   My bibliography  Save this article

Perfect flat band with chirality and charge ordering out of strong spin-orbit interaction

Author

Listed:
  • Hiroki Nakai

    (University of Tokyo)

  • Chisa Hotta

    (University of Tokyo)

Abstract

Spin-orbit interaction has established itself as a key player in the emergent phenomena in modern condensed matter, including topological insulator, spin liquid and spin-dependent transports. However, its function is rather limited to adding topological nature to band kinetics, leaving behind the growing interest in the direct interplay with electron correlation. Here, we prove by our spinor line graph theory that a very strong spin-orbit interaction realized in 5d pyrochlore electronic systems generates multiply degenerate perfect flat bands. Unlike any of the previous flat bands, the electrons in this band localize in real space by destructively interfering with each other in a spin selective manner governed by the SU(2) gauge field. These electrons avoid the Coulomb interaction by self-organizing their localized wave functions, which may lead to a flat-band state with a stiff spin chirality. It also causes perfectly trimerized charge ordering, which may explain the recently discovered exotic low-temperature insulating phase of CsW2O6.

Suggested Citation

  • Hiroki Nakai & Chisa Hotta, 2022. "Perfect flat band with chirality and charge ordering out of strong spin-orbit interaction," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28132-y
    DOI: 10.1038/s41467-022-28132-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28132-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28132-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yuan Cao & Valla Fatemi & Shiang Fang & Kenji Watanabe & Takashi Taniguchi & Efthimios Kaxiras & Pablo Jarillo-Herrero, 2018. "Unconventional superconductivity in magic-angle graphene superlattices," Nature, Nature, vol. 556(7699), pages 43-50, April.
    2. Yonglong Xie & Biao Lian & Berthold Jäck & Xiaomeng Liu & Cheng-Li Chiu & Kenji Watanabe & Takashi Taniguchi & B. Andrei Bernevig & Ali Yazdani, 2019. "Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene," Nature, Nature, vol. 572(7767), pages 101-105, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keshav Singh & Aaron Chew & Jonah Herzog-Arbeitman & B. Andrei Bernevig & Oskar Vafek, 2024. "Topological heavy fermions in magnetic field," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Anushree Datta & M. J. Calderón & A. Camjayi & E. Bascones, 2023. "Heavy quasiparticles and cascades without symmetry breaking in twisted bilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Dongfei Wang & De-Liang Bao & Qi Zheng & Chang-Tian Wang & Shiyong Wang & Peng Fan & Shantanu Mishra & Lei Tao & Yao Xiao & Li Huang & Xinliang Feng & Klaus Müllen & Yu-Yang Zhang & Roman Fasel & Pasc, 2023. "Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Si-yu Li & Zhengwen Wang & Yucheng Xue & Yingbo Wang & Shihao Zhang & Jianpeng Liu & Zheng Zhu & Kenji Watanabe & Takashi Taniguchi & Hong-jun Gao & Yuhang Jiang & Jinhai Mao, 2022. "Imaging topological and correlated insulating states in twisted monolayer-bilayer graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. J. González & T. Stauber, 2023. "Ising superconductivity induced from spin-selective valley symmetry breaking in twisted trilayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    6. Sami Dzsaber & Diego A. Zocco & Alix McCollam & Franziska Weickert & Ross McDonald & Mathieu Taupin & Gaku Eguchi & Xinlin Yan & Andrey Prokofiev & Lucas M. K. Tang & Bryan Vlaar & Laurel E. Winter & , 2022. "Control of electronic topology in a strongly correlated electron system," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    8. Suk Hyun Sung & Yin Min Goh & Hyobin Yoo & Rebecca Engelke & Hongchao Xie & Kuan Zhang & Zidong Li & Andrew Ye & Parag B. Deotare & Ellad B. Tadmor & Andrew J. Mannix & Jiwoong Park & Liuyan Zhao & Ph, 2022. "Torsional periodic lattice distortions and diffraction of twisted 2D materials," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    9. Robin Huber & Max-Niklas Steffen & Martin Drienovsky & Andreas Sandner & Kenji Watanabe & Takashi Taniguchi & Daniela Pfannkuche & Dieter Weiss & Jonathan Eroms, 2022. "Band conductivity oscillations in a gate-tunable graphene superlattice," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    10. Shouheng Chen & Zihan Liang & Jinshui Miao & Xiang-Long Yu & Shuo Wang & Yule Zhang & Han Wang & Yun Wang & Chun Cheng & Gen Long & Taihong Wang & Lin Wang & Han Zhang & Xiaolong Chen, 2024. "Infrared optoelectronics in twisted black phosphorus," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Max Heyl & Kyosuke Adachi & Yuki M. Itahashi & Yuji Nakagawa & Yuichi Kasahara & Emil J. W. List-Kratochvil & Yusuke Kato & Yoshihiro Iwasa, 2022. "Vortex dynamics in the two-dimensional BCS-BEC crossover," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    12. Sunny Gupta & Henry Yu & Boris I. Yakobson, 2022. "Designing 1D correlated-electron states by non-Euclidean topography of 2D monolayers," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    13. Yiran Ding & Mengqi Zeng & Qijing Zheng & Jiaqian Zhang & Ding Xu & Weiyin Chen & Chenyang Wang & Shulin Chen & Yingying Xie & Yu Ding & Shuting Zheng & Jin Zhao & Peng Gao & Lei Fu, 2021. "Bidirectional and reversible tuning of the interlayer spacing of two-dimensional materials," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    14. Jing Ding & Hanxiao Xiang & Wenqiang Zhou & Naitian Liu & Qianmei Chen & Xinjie Fang & Kangyu Wang & Linfeng Wu & Kenji Watanabe & Takashi Taniguchi & Na Xin & Shuigang Xu, 2024. "Engineering band structures of two-dimensional materials with remote moiré ferroelectricity," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    15. Hanyu Wang & Wei Xu & Zeyong Wei & Yiyuan Wang & Zhanshan Wang & Xinbin Cheng & Qinghua Guo & Jinhui Shi & Zhihong Zhu & Biao Yang, 2024. "Twisted photonic Weyl meta-crystals and aperiodic Fermi arc scattering," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    16. Mengqi Huang & Zeliang Sun & Gerald Yan & Hongchao Xie & Nishkarsh Agarwal & Gaihua Ye & Suk Hyun Sung & Hanyi Lu & Jingcheng Zhou & Shaohua Yan & Shangjie Tian & Hechang Lei & Robert Hovden & Rui He , 2023. "Revealing intrinsic domains and fluctuations of moiré magnetism by a wide-field quantum microscope," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Subhasis Samanta & Hwiwoo Park & Chanhyeon Lee & Sungmin Jeon & Hengbo Cui & Yong-Xin Yao & Jungseek Hwang & Kwang-Yong Choi & Heung-Sik Kim, 2024. "Emergence of flat bands and ferromagnetic fluctuations via orbital-selective electron correlations in Mn-based kagome metal," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    19. Jesse C. Hoke & Yifan Li & Julian May-Mann & Kenji Watanabe & Takashi Taniguchi & Barry Bradlyn & Taylor L. Hughes & Benjamin E. Feldman, 2024. "Uncovering the spin ordering in magic-angle graphene via edge state equilibration," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    20. Jonas B. Profe & Dante M. Kennes, 2022. "TU $$^2$$ 2 FRG: a scalable approach for truncated unity functional renormalization group in generic fermionic models," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 95(3), pages 1-13, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28132-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.