IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-27983-9.html
   My bibliography  Save this article

Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions

Author

Listed:
  • Tiantian Man

    (East China Normal University
    Nanjing University of Science and Technology)

  • Caixia Xu

    (East China Normal University)

  • Xiao-Yuan Liu

    (Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic)

  • Dan Li

    (East China Normal University)

  • Chia-Kuang Tsung

    (Merkert Chemistry Center, Boston College)

  • Hao Pei

    (East China Normal University)

  • Ying Wan

    (Nanjing University of Science and Technology)

  • Li Li

    (East China Normal University)

Abstract

Biocatalytic transformations in living organisms, such as multi-enzyme catalytic cascades, proceed in different cellular membrane-compartmentalized organelles with high efficiency. Nevertheless, it remains challenging to mimicking biocatalytic cascade processes in natural systems. Herein, we demonstrate that multi-shelled metal-organic frameworks (MOFs) can be used as a hierarchical scaffold to spatially organize enzymes on nanoscale to enhance cascade catalytic efficiency. Encapsulating multi-enzymes with multi-shelled MOFs by epitaxial shell-by-shell overgrowth leads to 5.8~13.5-fold enhancements in catalytic efficiencies compared with free enzymes in solution. Importantly, multi-shelled MOFs can act as a multi-spatial-compartmental nanoreactor that allows physically compartmentalize multiple enzymes in a single MOF nanoparticle for operating incompatible tandem biocatalytic reaction in one pot. Additionally, we use nanoscale Fourier transform infrared (nano-FTIR) spectroscopy to resolve nanoscale heterogeneity of vibrational activity associated to enzymes encapsulated in multi-shelled MOFs. Furthermore, multi-shelled MOFs enable facile control of multi-enzyme positions according to specific tandem reaction routes, in which close positioning of enzyme-1-loaded and enzyme-2-loaded shells along the inner-to-outer shells could effectively facilitate mass transportation to promote efficient tandem biocatalytic reaction. This work is anticipated to shed new light on designing efficient multi-enzyme catalytic cascades to encourage applications in many chemical and pharmaceutical industrial processes.

Suggested Citation

  • Tiantian Man & Caixia Xu & Xiao-Yuan Liu & Dan Li & Chia-Kuang Tsung & Hao Pei & Ying Wan & Li Li, 2022. "Hierarchically encapsulating enzymes with multi-shelled metal-organic frameworks for tandem biocatalytic reactions," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27983-9
    DOI: 10.1038/s41467-022-27983-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-27983-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-27983-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haidong Xu & Ji Han & Bin Zhao & Ruigang Sun & Guiyuan Zhong & Guangrui Chen & Yusuke Yamauchi & Buyuan Guan, 2023. "A facile dual-template-directed successive assembly approach to hollow multi-shell mesoporous metal–organic framework particles," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Vishal Maingi & Zhao Zhang & Chris Thachuk & Namita Sarraf & Edwin R. Chapman & Paul W. K. Rothemund, 2023. "Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Danping Tian & Ruipeng Hao & Xiaoming Zhang & Hu Shi & Yuwei Wang & Linfeng Liang & Haichao Liu & Hengquan Yang, 2023. "Multi-compartmental MOF microreactors derived from Pickering double emulsions for chemo-enzymatic cascade catalysis," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    4. Qiang Chen & Ge Qu & Xu Li & Mingjian Feng & Fan Yang & Yanjie Li & Jincheng Li & Feifei Tong & Shiyi Song & Yujun Wang & Zhoutong Sun & Guangsheng Luo, 2023. "Active and stable alcohol dehydrogenase-assembled hydrogels via synergistic bridging of triazoles and metal ions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-27983-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.