IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27923-z.html
   My bibliography  Save this article

RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state

Author

Listed:
  • Germán Belenguer

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Gianmarco Mastrogiovanni

    (University of Cambridge
    University of Cambridge
    University of Cambridge)

  • Clare Pacini

    (Wellcome Sanger Institute)

  • Zoe Hall

    (Imperial College London)

  • Anna M. Dowbaj

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Robert Arnes-Benito

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Aleksandra Sljukic

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Nicole Prior

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Sofia Kakava

    (The Max Planck Institute of Molecular Cell Biology and Genetics)

  • Charles R. Bradshaw

    (University of Cambridge)

  • Susan Davies

    (Cambridge University Hospitals NHS Foundation Trust)

  • Michele Vacca

    (University of Cambridge
    University of Bari “Aldo Moro”)

  • Kourosh Saeb-Parsy

    (University of Cambridge and NIHR Cambridge Biomedical Research Centre)

  • Bon-Kyoung Koo

    (Vienna Biocenter (VBC))

  • Meritxell Huch

    (The Max Planck Institute of Molecular Cell Biology and Genetics
    University of Cambridge
    University of Cambridge)

Abstract

RNF43/ZNRF3 negatively regulate WNT signalling. Both genes are mutated in several types of cancers, however, their contribution to liver disease is unknown. Here we describe that hepatocyte-specific loss of Rnf43/Znrf3 results in steatohepatitis and in increase in unsaturated lipids, in the absence of dietary fat supplementation. Upon injury, Rnf43/Znrf3 deletion results in defective hepatocyte regeneration and liver cancer, caused by an imbalance between differentiation/proliferation. Using hepatocyte-, hepatoblast- and ductal cell-derived organoids we demonstrate that the differentiation defects and lipid alterations are, in part, cell-autonomous. Interestingly, ZNRF3 mutant liver cancer patients present poorer prognosis, altered hepatic lipid metabolism and steatohepatitis/NASH signatures. Our results imply that RNF43/ZNRF3 predispose to liver cancer by controlling the proliferative/differentiation and lipid metabolic state of hepatocytes. Both mechanisms combined facilitate the progression towards malignancy. Our findings might aid on the management of those RNF43/ZNRF3 mutated individuals at risk of developing fatty liver and/or liver cancer.

Suggested Citation

  • Germán Belenguer & Gianmarco Mastrogiovanni & Clare Pacini & Zoe Hall & Anna M. Dowbaj & Robert Arnes-Benito & Aleksandra Sljukic & Nicole Prior & Sofia Kakava & Charles R. Bradshaw & Susan Davies & M, 2022. "RNF43/ZNRF3 loss predisposes to hepatocellular-carcinoma by impairing liver regeneration and altering the liver lipid metabolic ground-state," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27923-z
    DOI: 10.1038/s41467-021-27923-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27923-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27923-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bi-Sen Ding & Daniel J. Nolan & Jason M. Butler & Daylon James & Alexander O. Babazadeh & Zev Rosenwaks & Vivek Mittal & Hideki Kobayashi & Koji Shido & David Lyden & Thomas N. Sato & Sina Y. Rabbany , 2010. "Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration," Nature, Nature, vol. 468(7321), pages 310-315, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cyrill Géraud & Konstantin Evdokimov & Beate K Straub & Wiebke K Peitsch & Alexandra Demory & Yvette Dörflinger & Kai Schledzewski & Astrid Schmieder & Peter Schemmer & Hellmut G Augustin & Peter Schi, 2012. "Unique Cell Type-Specific Junctional Complexes in Vascular Endothelium of Human and Rat Liver Sinusoids," PLOS ONE, Public Library of Science, vol. 7(4), pages 1-12, April.
    2. Linda Große-Segerath & Paula Follert & Kristina Behnke & Julia Ettich & Tobias Buschmann & Philip Kirschner & Sonja Hartwig & Stefan Lehr & Mortimer Korf-Klingebiel & Daniel Eberhard & Nadja Lehwald-T, 2024. "Identification of myeloid-derived growth factor as a mechanically-induced, growth-promoting angiocrine signal for human hepatocytes," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    3. Hirotoki Ohkubo & Yoshiya Ito & Tsutomu Minamino & Koji Eshima & Ken Kojo & Shin-ichiro Okizaki & Mitsuhiro Hirata & Masabumi Shibuya & Masahiko Watanabe & Masataka Majima, 2014. "VEGFR1-Positive Macrophages Facilitate Liver Repair and Sinusoidal Reconstruction after Hepatic Ischemia/Reperfusion Injury," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27923-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.