IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27884-3.html
   My bibliography  Save this article

Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network

Author

Listed:
  • M. Schioppo

    (National Physical Laboratory (NPL))

  • J. Kronjäger

    (National Physical Laboratory (NPL))

  • A. Silva

    (National Physical Laboratory (NPL))

  • R. Ilieva

    (National Physical Laboratory (NPL))

  • J. W. Paterson

    (National Physical Laboratory (NPL))

  • C. F. A. Baynham

    (National Physical Laboratory (NPL))

  • W. Bowden

    (National Physical Laboratory (NPL))

  • I. R. Hill

    (National Physical Laboratory (NPL))

  • R. Hobson

    (National Physical Laboratory (NPL))

  • A. Vianello

    (National Physical Laboratory (NPL))

  • M. Dovale-Álvarez

    (National Physical Laboratory (NPL))

  • R. A. Williams

    (National Physical Laboratory (NPL))

  • G. Marra

    (National Physical Laboratory (NPL))

  • H. S. Margolis

    (National Physical Laboratory (NPL))

  • A. Amy-Klein

    (Laboratoire de Physique des Lasers (LPL), Université Paris 13, CNRS)

  • O. Lopez

    (Laboratoire de Physique des Lasers (LPL), Université Paris 13, CNRS)

  • E. Cantin

    (Laboratoire de Physique des Lasers (LPL), Université Paris 13, CNRS
    LNE-SYRTE, Observatoire de Paris - Université PSL, CNRS, Sorbonne Université, LNE)

  • H. Álvarez-Martínez

    (LNE-SYRTE, Observatoire de Paris - Université PSL, CNRS, Sorbonne Université, LNE
    Real Instituto y Observatorio de la Armada (ROA))

  • R. Targat

    (LNE-SYRTE, Observatoire de Paris - Université PSL, CNRS, Sorbonne Université, LNE)

  • P. E. Pottie

    (LNE-SYRTE, Observatoire de Paris - Université PSL, CNRS, Sorbonne Université, LNE)

  • N. Quintin

    (RENATER)

  • T. Legero

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • S. Häfner

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • U. Sterr

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • R. Schwarz

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • S. Dörscher

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • C. Lisdat

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • S. Koke

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • A. Kuhl

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • T. Waterholter

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • E. Benkler

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

  • G. Grosche

    (Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100)

Abstract

Ultrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10−17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.

Suggested Citation

  • M. Schioppo & J. Kronjäger & A. Silva & R. Ilieva & J. W. Paterson & C. F. A. Baynham & W. Bowden & I. R. Hill & R. Hobson & A. Vianello & M. Dovale-Álvarez & R. A. Williams & G. Marra & H. S. Margoli, 2022. "Comparing ultrastable lasers at 7 × 10−17 fractional frequency instability through a 2220 km optical fibre network," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27884-3
    DOI: 10.1038/s41467-021-27884-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27884-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27884-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. W. F. McGrew & X. Zhang & R. J. Fasano & S. A. Schäffer & K. Beloy & D. Nicolodi & R. C. Brown & N. Hinkley & G. Milani & M. Schioppo & T. H. Yoon & A. D. Ludlow, 2018. "Atomic clock performance enabling geodesy below the centimetre level," Nature, Nature, vol. 564(7734), pages 87-90, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xin Zheng & Jonathan Dolde & Matthew C. Cambria & Hong Ming Lim & Shimon Kolkowitz, 2023. "A lab-based test of the gravitational redshift with a miniature clock network," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Eliot A. Bohr & Sofus L. Kristensen & Christoph Hotter & Stefan A. Schäffer & Julian Robinson-Tait & Jan W. Thomsen & Tanya Zelevinsky & Helmut Ritsch & Jörg H. Müller, 2024. "Collectively enhanced Ramsey readout by cavity sub- to superradiant transition," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    3. David R. Leibrandt & Sergey G. Porsev & Charles Cheung & Marianna S. Safronova, 2024. "Prospects of a thousand-ion Sn2+ Coulomb-crystal clock with sub-10−19 inaccuracy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27884-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.