IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27805-4.html
   My bibliography  Save this article

Observation of ballistic upstream modes at fractional quantum Hall edges of graphene

Author

Listed:
  • Ravi Kumar

    (Indian Institute of Science)

  • Saurabh Kumar Srivastav

    (Indian Institute of Science)

  • Christian Spånslätt

    (Chalmers University of Technology
    Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology)

  • K. Watanabe

    (National Institute of Material Science)

  • T. Taniguchi

    (National Institute of Material Science)

  • Yuval Gefen

    (Weizmann Institute of Science)

  • Alexander D. Mirlin

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology
    Petersburg Nuclear Physics Institute
    L. D. Landau Institute for Theoretical Physics RAS)

  • Anindya Das

    (Indian Institute of Science)

Abstract

The presence of “upstream” modes, moving against the direction of charge current flow in the fractional quantum Hall (FQH) phases, is critical for the emergence of renormalized modes with exotic quantum statistics. Detection of excess noise at the edge is a smoking gun for the presence of upstream modes. Here, we report noise measurements at the edges of FQH states realized in dual graphite-gated bilayer graphene devices. A noiseless dc current is injected at one of the edge contacts, and the noise generated at contacts at length, L = 4 μm and 10 μm away along the upstream direction is studied. For integer and particle-like FQH states, no detectable noise is measured. By contrast, for “hole-conjugate” FQH states, we detect a strong noise proportional to the injected current, unambiguously proving the existence of upstream modes. The noise magnitude remains independent of length, which matches our theoretical analysis demonstrating the ballistic nature of upstream energy transport, quite distinct from the diffusive propagation reported earlier in GaAs-based systems.

Suggested Citation

  • Ravi Kumar & Saurabh Kumar Srivastav & Christian Spånslätt & K. Watanabe & T. Taniguchi & Yuval Gefen & Alexander D. Mirlin & Anindya Das, 2022. "Observation of ballistic upstream modes at fractional quantum Hall edges of graphene," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27805-4
    DOI: 10.1038/s41467-021-27805-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27805-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27805-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yang Ji & Yunchul Chung & D. Sprinzak & M. Heiblum & D. Mahalu & Hadas Shtrikman, 2003. "An electronic Mach–Zehnder interferometer," Nature, Nature, vol. 422(6930), pages 415-418, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saurabh Kumar Srivastav & Ravi Kumar & Christian Spånslätt & K. Watanabe & T. Taniguchi & Alexander D. Mirlin & Yuval Gefen & Anindya Das, 2022. "Determination of topological edge quantum numbers of fractional quantum Hall phases by thermal conductance measurements," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwanchul Jung & Dongsung T. Park & Seokyeong Lee & Uhjin Kim & Chanuk Yang & Jehyun Kim & V. Umansky & Dohun Kim & H.-S. Sim & Yunchul Chung & Hyoungsoon Choi & Hyung Kook Choi, 2023. "Observation of electronic modes in open cavity resonator," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. I. Taktak & M. Kapfer & J. Nath & P. Roulleau & M. Acciai & J. Splettstoesser & I. Farrer & D. A. Ritchie & D. C. Glattli, 2022. "Two-particle time-domain interferometry in the fractional quantum Hall effect regime," Nature Communications, Nature, vol. 13(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27805-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.