IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27557-1.html
   My bibliography  Save this article

Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts

Author

Listed:
  • Jiafeng Yu

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Xingtao Sun

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xin Tong

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jixin Zhang

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Jie Li

    (School of Chemistry and Chemical Engineering, Yangzhou University)

  • Shiyan Li

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yuefeng Liu

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

  • Noritatsu Tsubaki

    (School of Engineering, University of Toyama, Gofuku 3190)

  • Takayuki Abe

    (Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190)

  • Jian Sun

    (Dalian Institute of Chemical Physics, Chinese Academy of Sciences)

Abstract

The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.

Suggested Citation

  • Jiafeng Yu & Xingtao Sun & Xin Tong & Jixin Zhang & Jie Li & Shiyan Li & Yuefeng Liu & Noritatsu Tsubaki & Takayuki Abe & Jian Sun, 2021. "Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27557-1
    DOI: 10.1038/s41467-021-27557-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27557-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27557-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    2. Hao-Xin Liu & Jin-Ying Li & Xuetao Qin & Chao Ma & Wei-Wei Wang & Kai Xu & Han Yan & Dequan Xiao & Chun-Jiang Jia & Qiang Fu & Ding Ma, 2022. "Ptn–Ov synergistic sites on MoOx/γ-Mo2N heterostructure for low-temperature reverse water–gas shift reaction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27557-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.