IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26407-4.html
   My bibliography  Save this article

Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy

Author

Listed:
  • Eric H. Bent

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Luis R. Millán-Barea

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Iris Zhuang

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Daniel R. Goulet

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Julia Fröse

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

  • Michael T. Hemann

    (The David H. Koch Institute for Integrative Cancer Research
    Massachusetts Institute of Technology)

Abstract

Cytotoxic chemotherapeutics primarily function through DNA damage-induced tumor cell apoptosis, although the inflammation provoked by these agents can stimulate anti-cancer immune responses. The mechanisms that control these distinct effects and limit immunogenic responses to DNA-damage mediated cell death in vivo are currently unclear. Using a mouse model of BCR-ABL+ B-cell acute lymphoblastic leukemia, we show that chemotherapy-induced anti-cancer immunity is suppressed by the tumor microenvironment through production of the cytokine IL-6. The chemotherapeutic doxorubicin is curative in IL-6-deficient mice through the induction of CD8+ T-cell-mediated anti-cancer responses, while moderately extending lifespan in wild type tumor-bearing mice. We also show that IL-6 suppresses the effectiveness of immune-checkpoint inhibition with anti-PD-L1 blockade. Our results suggest that IL-6 is a key regulator of anti-cancer immune responses induced by genotoxic stress and that its inhibition can switch cancer cell clearance from primarily apoptotic to immunogenic, promoting and maintaining durable anti-tumor immune responses.

Suggested Citation

  • Eric H. Bent & Luis R. Millán-Barea & Iris Zhuang & Daniel R. Goulet & Julia Fröse & Michael T. Hemann, 2021. "Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26407-4
    DOI: 10.1038/s41467-021-26407-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26407-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26407-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Olivier Demaria & Stéphanie Cornen & Marc Daëron & Yannis Morel & Ruslan Medzhitov & Eric Vivier, 2019. "Publisher Correction: Harnessing innate immunity in cancer therapy," Nature, Nature, vol. 576(7785), pages 3-3, December.
    2. Olivier Demaria & Stéphanie Cornen & Marc Daëron & Yannis Morel & Ruslan Medzhitov & Eric Vivier, 2019. "Harnessing innate immunity in cancer therapy," Nature, Nature, vol. 574(7776), pages 45-56, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengxue Zhou & Jiaxin Wang & Jiaxing Pan & Hui Wang & Lujia Huang & Bo Hou & Yi Lai & Fengyang Wang & Qingxiang Guan & Feng Wang & Zhiai Xu & Haijun Yu, 2023. "Nanovesicles loaded with a TGF-β receptor 1 inhibitor overcome immune resistance to potentiate cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Katrin Rabold & Martijn Zoodsma & Inge Grondman & Yunus Kuijpers & Manita Bremmers & Martin Jaeger & Bowen Zhang & Willemijn Hobo & Han J. Bonenkamp & Johannes H. W. Wilt & Marcel J. R. Janssen & Lenn, 2022. "Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Yuedong Guo & Qunqun Bao & Ping Hu & Jianlin Shi, 2023. "Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Qian-Ni Ye & Long Zhu & Jie Liang & Dong-Kun Zhao & Tai-Yu Tian & Ya-Nan Fan & Si-Yi Ye & Hua Liu & Xiao-Yi Huang & Zhi-Ting Cao & Song Shen & Jun Wang, 2024. "Orchestrating NK and T cells via tri-specific nano-antibodies for synergistic antitumor immunity," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Yu-Hsuan Chen & Han-Hsiun Chen & Won-Jing Wang & Hsin-Yi Chen & Wei-Syun Huang & Chien-Han Kao & Sin-Rong Lee & Nai Yang Yeat & Ruei-Liang Yan & Shu-Jou Chan & Kuen-Phon Wu & Ruey-Hwa Chen, 2023. "TRABID inhibition activates cGAS/STING-mediated anti-tumor immunity through mitosis and autophagy dysregulation," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    6. Caihua Zhang & Kang Li & Hongzhang Zhu & Maosheng Cheng & Shuang Chen & Rongsong Ling & Cheng Wang & Demeng Chen, 2024. "ITGB6 modulates resistance to anti-CD276 therapy in head and neck cancer by promoting PF4+ macrophage infiltration," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26407-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.