IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25561-z.html
   My bibliography  Save this article

Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy

Author

Listed:
  • Xing Qin

    (East China University of Science and Technology)

  • Chu Wu

    (Tongji University)

  • Dechao Niu

    (East China University of Science and Technology)

  • Limei Qin

    (East China University of Science and Technology)

  • Xia Wang

    (Tongji University)

  • Qigang Wang

    (Tongji University)

  • Yongsheng Li

    (East China University of Science and Technology)

Abstract

Peroxisome, a special cytoplasmic organelle, possesses one or more kinds of oxidases for hydrogen peroxide (H2O2) production and catalase for H2O2 degradation, which serves as an intracellular H2O2 regulator to degrade toxic peroxides to water. Inspired by this biochemical pathway, we demonstrate the reactive oxygen species (ROS) induced tumor therapy by integrating lactate oxidase (LOx) and catalase (CAT) into Fe3O4 nanoparticle/indocyanine green (ICG) co-loaded hybrid nanogels (designated as FIGs-LC). Based on the O2 redistribution and H2O2 activation by cascading LOx and CAT catalytic metabolic regulation, hydroxyl radical (·OH) and singlet oxygen (1O2) production can be modulated for glutathione (GSH)-activated chemodynamic therapy (CDT) and NIR-triggered photodynamic therapy (PDT), by manipulating the ratio of LOx and CAT to catalyze endogenous lactate to produce H2O2 and further cascade decomposing H2O2 into O2. The regulation reactions of FIGs-LC significantly elevate the intracellular ROS level and cause fatal damage to cancer cells inducing the effective inhibition of tumor growth. Such enzyme complex loaded hybrid nanogel present potential for biomedical ROS regulation, especially for the tumors with different redox state, size, and subcutaneous depth.

Suggested Citation

  • Xing Qin & Chu Wu & Dechao Niu & Limei Qin & Xia Wang & Qigang Wang & Yongsheng Li, 2021. "Peroxisome inspired hybrid enzyme nanogels for chemodynamic and photodynamic therapy," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25561-z
    DOI: 10.1038/s41467-021-25561-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25561-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25561-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Yao & Yuwei Xu & Jianpu Tang & Pin Hu & Hedong Qi & Dayong Yang, 2022. "Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Yufu Tang & Yuanyuan Li & Bowen Li & Wentao Song & Guobin Qi & Jianwu Tian & Wei Huang & Quli Fan & Bin Liu, 2024. "Oxygen-independent organic photosensitizer with ultralow-power NIR photoexcitation for tumor-specific photodynamic therapy," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Gang He & Yashi Li & Muhammad Rizwan Younis & Lian-Hua Fu & Ting He & Shan Lei & Jing Lin & Peng Huang, 2022. "Synthetic biology-instructed transdermal microneedle patch for traceable photodynamic therapy," Nature Communications, Nature, vol. 13(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25561-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.