IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25508-4.html
   My bibliography  Save this article

Ultra-thin self-healing vitrimer coatings for durable hydrophobicity

Author

Listed:
  • Jingcheng Ma

    (University of Illinois)

  • Laura E. Porath

    (University of Illinois
    University of Illinois)

  • Md Farhadul Haque

    (University of Illinois)

  • Soumyadip Sett

    (University of Illinois)

  • Kazi Fazle Rabbi

    (University of Illinois)

  • SungWoo Nam

    (University of Illinois
    University of Illinois
    University of Illinois)

  • Nenad Miljkovic

    (University of Illinois
    University of Illinois
    University of Illinois
    Kyushu University)

  • Christopher M. Evans

    (University of Illinois
    University of Illinois
    University of Illinois)

Abstract

Durable hydrophobic materials have attracted considerable interest in the last century. Currently, the most popular strategy to achieve hydrophobic coating durability is through the combination of a perfluoro-compound with a mechanically robust matrix to form a composite for coating protection. The matrix structure is typically large (thicker than 10 μm), difficult to scale to arbitrary materials, and incompatible with applications requiring nanoscale thickness such as heat transfer, water harvesting, and desalination. Here, we demonstrate durable hydrophobicity and superhydrophobicity with nanoscale-thick, perfluorinated compound-free polydimethylsiloxane vitrimers that are self-healing due to the exchange of network strands. The polydimethylsiloxane vitrimer thin film maintains excellent hydrophobicity and optical transparency after scratching, cutting, and indenting. We show that the polydimethylsiloxane vitrimer thin film can be deposited through scalable dip-coating on a variety of substrates. In contrast to previous work achieving thick durable hydrophobic coatings by passively stacking protective structures, this work presents a pathway to achieving ultra-thin (thinner than 100 nm) durable hydrophobic films.

Suggested Citation

  • Jingcheng Ma & Laura E. Porath & Md Farhadul Haque & Soumyadip Sett & Kazi Fazle Rabbi & SungWoo Nam & Nenad Miljkovic & Christopher M. Evans, 2021. "Ultra-thin self-healing vitrimer coatings for durable hydrophobicity," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25508-4
    DOI: 10.1038/s41467-021-25508-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25508-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25508-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousa, Mohamed H. & Yang, Cheng-Min & Nawaz, Kashif & Miljkovic, Nenad, 2022. "Review of heat transfer enhancement techniques in two-phase flows for highly efficient and sustainable cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Muhammad Jahidul Hoque & Longnan Li & Jingcheng Ma & Hyeongyun Cha & Soumyadip Sett & Xiao Yan & Kazi Fazle Rabbi & Jin Yao Ho & Siavash Khodakarami & Jason Suwala & Wentao Yang & Omid Mohammadmoradi , 2023. "Ultra-resilient multi-layer fluorinated diamond like carbon hydrophobic surfaces," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25508-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.