IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25430-9.html
   My bibliography  Save this article

Genetic and epigenetic basis of hepatoblastoma diversity

Author

Listed:
  • Genta Nagae

    (the University of Tokyo)

  • Shogo Yamamoto

    (the University of Tokyo)

  • Masashi Fujita

    (RIKEN Center for Integrative Medical Sciences)

  • Takanori Fujita

    (the University of Tokyo)

  • Aya Nonaka

    (the University of Tokyo)

  • Takayoshi Umeda

    (the University of Tokyo)

  • Shiro Fukuda

    (the University of Tokyo)

  • Kenji Tatsuno

    (the University of Tokyo)

  • Kazuhiro Maejima

    (RIKEN Center for Integrative Medical Sciences)

  • Akimasa Hayashi

    (the University of Tokyo
    Kyorin University Faculty of Medicine)

  • Sho Kurihara

    (Hiroshima University Hospital)

  • Masato Kojima

    (Hiroshima University Hospital)

  • Tomoro Hishiki

    (Chiba University Graduate School of Medicine)

  • Kenichiro Watanabe

    (Shizuoka Children’s Hospital)

  • Kohmei Ida

    (Teikyo University Mizonokuchi Hospital)

  • Michihiro Yano

    (Akita University Hospital)

  • Yoko Hiyama

    (Hiroshima University)

  • Yukichi Tanaka

    (Kanagawa Children’s Medical Center)

  • Takeshi Inoue

    (Osaka City General Hospital)

  • Hiroki Ueda

    (the University of Tokyo)

  • Hidewaki Nakagawa

    (RIKEN Center for Integrative Medical Sciences)

  • Hiroyuki Aburatani

    (the University of Tokyo)

  • Eiso Hiyama

    (Hiroshima University Hospital
    Hiroshima University)

Abstract

Hepatoblastoma (HB) is the most common pediatric liver malignancy; however, hereditary predisposition and acquired molecular aberrations related to HB clinicopathological diversity are not well understood. Here, we perform an integrative genomic profiling of 163 pediatric liver tumors (154 HBs and nine hepatocellular carcinomas) based on the data acquired from a cohort study (JPLT-2). The total number of somatic mutations is precious low (0.52/Mb on exonic regions) but correlated with age at diagnosis. Telomerase reverse transcriptase (TERT) promoter mutations are prevalent in the tween HBs, selective in the transitional liver cell tumor (TLCT, > 8 years old). DNA methylation profiling reveals that classical HBs are characterized by the specific hypomethylated enhancers, which are enriched with binding sites for ASCL2, a regulatory transcription factor for definitive endoderm in Wnt-pathway. Prolonged upregulation of ASCL2, as well as fetal-liver-like methylation patterns of IGF2 promoters, suggests their “cell of origin” derived from the premature hepatoblast, similar to intestinal epithelial cells, which are highly proliferative. Systematic molecular profiling of HB is a promising approach for understanding the epigenetic drivers of hepatoblast carcinogenesis and deriving clues for risk stratification.

Suggested Citation

  • Genta Nagae & Shogo Yamamoto & Masashi Fujita & Takanori Fujita & Aya Nonaka & Takayoshi Umeda & Shiro Fukuda & Kenji Tatsuno & Kazuhiro Maejima & Akimasa Hayashi & Sho Kurihara & Masato Kojima & Tomo, 2021. "Genetic and epigenetic basis of hepatoblastoma diversity," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25430-9
    DOI: 10.1038/s41467-021-25430-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25430-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25430-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jill Pilet & Theo Z. Hirsch & Barkha Gupta & Amélie Roehrig & Guillaume Morcrette & Aurore Pire & Eric Letouzé & Brice Fresneau & Sophie Taque & Laurence Brugières & Sophie Branchereau & Christophe Ch, 2023. "Preneoplastic liver colonization by 11p15.5 altered mosaic cells in young children with hepatoblastoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Hanbing Song & Simon Bucher & Katherine Rosenberg & Margaret Tsui & Deviana Burhan & Daniel Hoffman & Soo-Jin Cho & Arun Rangaswami & Marcus Breese & Stanley Leung & María V. Pons Ventura & E. Alejand, 2022. "Single-cell analysis of hepatoblastoma identifies tumor signatures that predict chemotherapy susceptibility using patient-specific tumor spheroids," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Funan He & Abhik M. Bandyopadhyay & Laura J. Klesse & Anna Rogojina & Sang H. Chun & Erin Butler & Taylor Hartshorne & Trevor Holland & Dawn Garcia & Korri Weldon & Luz-Nereida Perez Prado & Anne-Mari, 2023. "Genomic profiling of subcutaneous patient-derived xenografts reveals immune constraints on tumor evolution in childhood solid cancer," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Amélie Roehrig & Theo Z. Hirsch & Aurore Pire & Guillaume Morcrette & Barkha Gupta & Charles Marcaillou & Sandrine Imbeaud & Christophe Chardot & Emmanuel Gonzales & Emmanuel Jacquemin & Masahiro Seki, 2024. "Single-cell multiomics reveals the interplay of clonal evolution and cellular plasticity in hepatoblastoma," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    5. Jie Fang & Shivendra Singh & Changde Cheng & Sivaraman Natarajan & Heather Sheppard & Ahmed Abu-Zaid & Adam D. Durbin & Ha Won Lee & Qiong Wu & Jacob Steele & Jon P. Connelly & Hongjian Jin & Wenan Ch, 2023. "Genome-wide mapping of cancer dependency genes and genetic modifiers of chemotherapy in high-risk hepatoblastoma," Nature Communications, Nature, vol. 14(1), pages 1-27, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25430-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.