IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25148-8.html
   My bibliography  Save this article

Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating

Author

Listed:
  • Ying Zhang

    (The Hong Kong Polytechnic University)

  • Kuan Liu

    (The Hong Kong Polytechnic University)

  • Jiaming Huang

    (The Hong Kong Polytechnic University)

  • Xinxin Xia

    (The Chinese University of Hong Kong)

  • Jiupeng Cao

    (The Hong Kong Polytechnic University)

  • Guangming Zhao

    (The Hong Kong Polytechnic University)

  • Patrick W. K. Fong

    (The Hong Kong Polytechnic University)

  • Ye Zhu

    (The Hong Kong Polytechnic University)

  • Feng Yan

    (The Hong Kong Polytechnic University)

  • Yang Yang

    (UCLA)

  • Xinhui Lu

    (The Chinese University of Hong Kong)

  • Gang Li

    (The Hong Kong Polytechnic University)

Abstract

Graded bulk-heterojunction (G-BHJ) with well-defined vertical phase separation has potential to surpass classical BHJ in organic solar cells (OSCs). In this work, an effective G-BHJ strategy via nonhalogenated solvent sequential deposition is demonstrated using nonfullerene acceptor (NFA) OSCs. Spin-coated G-BHJ OSCs deliver an outstanding 17.48% power conversion efficiency (PCE). Depth-profiling X-ray photoelectron spectroscopy (DP-XPS) and angle-dependent grazing incidence X-ray diffraction (GI-XRD) techniques enable the visualization of polymer/NFA composition and crystallinity gradient distributions, which benefit charge transport, and enable outstanding thick OSC PCEs (16.25% for 300 nm, 14.37% for 500 nm), which are among the highest reported. Moreover, the nonhalogenated solvent enabled G-BHJ OSC via open-air blade coating and achieved a record 16.77% PCE. The blade-coated G-BHJ has drastically different D-A crystallization kinetics, which suppresses the excessive aggregation induced unfavorable phase separation in BHJ. All these make G-BHJ a feasible and promising strategy towards highly efficient, eco- and manufacture friendly OSCs.

Suggested Citation

  • Ying Zhang & Kuan Liu & Jiaming Huang & Xinxin Xia & Jiupeng Cao & Guangming Zhao & Patrick W. K. Fong & Ye Zhu & Feng Yan & Yang Yang & Xinhui Lu & Gang Li, 2021. "Graded bulk-heterojunction enables 17% binary organic solar cells via nonhalogenated open air coating," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25148-8
    DOI: 10.1038/s41467-021-25148-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25148-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25148-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Corzo & Diego Rosas-Villalva & Amruth C & Guillermo Tostado-Blázquez & Emily Bezerra Alexandre & Luis Huerta Hernandez & Jianhua Han & Han Xu & Maxime Babics & Stefaan Wolf & Derya Baran, 2023. "High-performing organic electronics using terpene green solvents from renewable feedstocks," Nature Energy, Nature, vol. 8(1), pages 62-73, January.
    2. Siwei Luo & Chao Li & Jianquan Zhang & Xinhui Zou & Heng Zhao & Kan Ding & Hui Huang & Jiali Song & Jicheng Yi & Han Yu & Kam Sing Wong & Guangye Zhang & Harald Ade & Wei Ma & Huawei Hu & Yanming Sun , 2023. "Auxiliary sequential deposition enables 19%-efficiency organic solar cells processed from halogen-free solvents," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Chee, A. Kuan-Way, 2023. "On current technology for light absorber materials used in highly efficient industrial solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    4. Jiehao Fu & Patrick W. K. Fong & Heng Liu & Chieh-Szu Huang & Xinhui Lu & Shirong Lu & Maged Abdelsamie & Tim Kodalle & Carolin M. Sutter-Fella & Yang Yang & Gang Li, 2023. "19.31% binary organic solar cell and low non-radiative recombination enabled by non-monotonic intermediate state transition," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25148-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.