IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25016-5.html
   My bibliography  Save this article

Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation

Author

Listed:
  • Naresh Kumar Kumawat

    (Linköping University)

  • Wolfgang Tress

    (Zurich University of Applied Sciences)

  • Feng Gao

    (Linköping University)

Abstract

The external quantum efficiency of perovskite light-emitting diodes (PeLEDs) has advanced quickly during the past few years. However, under pulsed operation, an operation mode which is important for display and visible light communication, the performance of PeLEDs changes a lot and requires in-depth understanding to facilitate these applications. Here, we report the response of PeLEDs under pulsed operation in the range of 10 Hz to 20 kHz. Beyond transient effects in the low frequencies, we find that for higher frequencies (>500 Hz) the transient electroluminescence intensity depends strongly on the duty cycle. This feature is much more pronounced and of different origin than that in conventional LEDs. We rationalise our experimental observations using a mathematical model and assign these features to the effect of mobile ionic charges in the perovskite. Our work also provides important implications for the operation of PeLEDs under the steady state, where accumulation of mobile ions at the interfaces could be beneficial for high electroluminescence yields but harmful for the long-term stability.

Suggested Citation

  • Naresh Kumar Kumawat & Wolfgang Tress & Feng Gao, 2021. "Mobile ions determine the luminescence yield of perovskite light-emitting diodes under pulsed operation," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25016-5
    DOI: 10.1038/s41467-021-25016-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25016-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25016-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yongjie Liu & Chen Tao & Yu Cao & Liangyan Chen & Shuxin Wang & Pei Li & Cheng Wang & Chenwei Liu & Feihong Ye & Shengyong Hu & Meng Xiao & Zheng Gao & Pengbing Gui & Fang Yao & Kailian Dong & Jiashua, 2022. "Synergistic passivation and stepped-dimensional perovskite analogs enable high-efficiency near-infrared light-emitting diodes," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25016-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.