IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-25002-x.html
   My bibliography  Save this article

Magnetic-field-induced robust zero Hall plateau state in MnBi2Te4 Chern insulator

Author

Listed:
  • Chang Liu

    (Tsinghua University
    Beijing Academy of Quantum Information Sciences)

  • Yongchao Wang

    (Tsinghua University)

  • Ming Yang

    (Huazhong University of Science and Technology)

  • Jiahao Mao

    (Tsinghua University)

  • Hao Li

    (Tsinghua University
    Tsinghua University)

  • Yaoxin Li

    (Tsinghua University)

  • Jiaheng Li

    (Tsinghua University)

  • Haipeng Zhu

    (Huazhong University of Science and Technology)

  • Junfeng Wang

    (Huazhong University of Science and Technology)

  • Liang Li

    (Huazhong University of Science and Technology)

  • Yang Wu

    (Tsinghua University
    Tsinghua University)

  • Yong Xu

    (Tsinghua University
    RIKEN Center for Emergent Matter Science, Wako
    Frontier Science Center for Quantum Information)

  • Jinsong Zhang

    (Tsinghua University
    Frontier Science Center for Quantum Information)

  • Yayu Wang

    (Tsinghua University
    Frontier Science Center for Quantum Information)

Abstract

The intrinsic antiferromagnetic topological insulator MnBi2Te4 provides an ideal platform for exploring exotic topological quantum phenomena. Recently, the Chern insulator and axion insulator phases have been realized in few-layer MnBi2Te4 devices at low magnetic field regime. However, the fate of MnBi2Te4 in high magnetic field has never been explored in experiment. In this work, we report transport studies of exfoliated MnBi2Te4 flakes in pulsed magnetic fields up to 61.5 T. In the high-field limit, the Chern insulator phase with Chern number C = −1 evolves into a robust zero Hall resistance plateau state. Nonlocal transport measurements and theoretical calculations demonstrate that the charge transport in the zero Hall plateau state is conducted by two counter-propagating edge states that arise from the combined effects of Landau levels and large Zeeman effect in strong magnetic fields. Our result demonstrates the intricate interplay among intrinsic magnetic order, external magnetic field, and nontrivial band topology in MnBi2Te4.

Suggested Citation

  • Chang Liu & Yongchao Wang & Ming Yang & Jiahao Mao & Hao Li & Yaoxin Li & Jiaheng Li & Haipeng Zhu & Junfeng Wang & Liang Li & Yang Wu & Yong Xu & Jinsong Zhang & Yayu Wang, 2021. "Magnetic-field-induced robust zero Hall plateau state in MnBi2Te4 Chern insulator," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25002-x
    DOI: 10.1038/s41467-021-25002-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-25002-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-25002-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoxin Li & Yongchao Wang & Zichen Lian & Hao Li & Zhiting Gao & Liangcai Xu & Huan Wang & Rui’e Lu & Longfei Li & Yang Feng & Jinjiang Zhu & Liangyang Liu & Yongqian Wang & Bohan Fu & Shuai Yang & Lu, 2024. "Fabrication-induced even-odd discrepancy of magnetotransport in few-layer MnBi2Te4," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Jiaqi Cai & Dmitry Ovchinnikov & Zaiyao Fei & Minhao He & Tiancheng Song & Zhong Lin & Chong Wang & David Cobden & Jiun-Haw Chu & Yong-Tao Cui & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Electric control of a canted-antiferromagnetic Chern insulator," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Dmitry Ovchinnikov & Jiaqi Cai & Zhong Lin & Zaiyao Fei & Zhaoyu Liu & Yong-Tao Cui & David H. Cobden & Jiun-Haw Chu & Cui-Zu Chang & Di Xiao & Jiaqiang Yan & Xiaodong Xu, 2022. "Topological current divider in a Chern insulator junction," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    4. Su Kong Chong & Chao Lei & Seng Huat Lee & Jan Jaroszynski & Zhiqiang Mao & Allan H. MacDonald & Kang L. Wang, 2023. "Anomalous Landau quantization in intrinsic magnetic topological insulators," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-25002-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.