IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24965-1.html
   My bibliography  Save this article

Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins

Author

Listed:
  • Stuti Sharma

    (Blavatnik Institute, Harvard Medical School)

  • Ruoyu Zhou

    (Westlake University)

  • Li Wan

    (Westlake University)

  • Shan Feng

    (Westlake University)

  • KangKang Song

    (University of Massachusetts Medical School
    University of Massachusetts Medical School)

  • Chen Xu

    (University of Massachusetts Medical School
    University of Massachusetts Medical School)

  • Yanyan Li

    (Westlake University)

  • Maofu Liao

    (Blavatnik Institute, Harvard Medical School)

Abstract

Lipoproteins are important for bacterial growth and antibiotic resistance. These proteins use lipid acyl chains attached to the N-terminal cysteine residue to anchor on the outer surface of cytoplasmic membrane. In Gram-negative bacteria, many lipoproteins are transported to the outer membrane (OM), a process dependent on the ATP-binding cassette (ABC) transporter LolCDE which extracts the OM-targeted lipoproteins from the cytoplasmic membrane. Lipid-anchored proteins pose a unique challenge for transport machinery as they have both hydrophobic lipid moieties and soluble protein component, and the underlying mechanism is poorly understood. Here we determined the cryo-EM structures of nanodisc-embedded LolCDE in the nucleotide-free and nucleotide-bound states at 3.8-Å and 3.5-Å resolution, respectively. The structural analyses, together with biochemical and mutagenesis studies, uncover how LolCDE recognizes its substrate by interacting with the lipid and N-terminal peptide moieties of the lipoprotein, and identify the amide-linked acyl chain as the key element for LolCDE interaction. Upon nucleotide binding, the transmembrane helices and the periplasmic domains of LolCDE undergo large-scale, asymmetric movements, resulting in extrusion of the captured lipoprotein. Comparison of LolCDE and MacB reveals the conserved mechanism of type VII ABC transporters and emphasizes the unique properties of LolCDE as a molecule extruder of triacylated lipoproteins.

Suggested Citation

  • Stuti Sharma & Ruoyu Zhou & Li Wan & Shan Feng & KangKang Song & Chen Xu & Yanyan Li & Maofu Liao, 2021. "Mechanism of LolCDE as a molecular extruder of bacterial triacylated lipoproteins," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24965-1
    DOI: 10.1038/s41467-021-24965-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24965-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24965-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiao Li & Wan Zheng & Ming Gu & Long Han & Yanmei Luo & Koukou Yu & Mengxin Sun & Yuliang Zong & Xiuxiu Ma & Bing Liu & Ethan P. Lowder & Deanna L. Mendez & Robert G. Kranz & Kai Zhang & Jiapeng Zhu, 2022. "Structures of the CcmABCD heme release complex at multiple states," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Jianwei Li & Xin Xu & Jian Shi & Juan A. Hermoso & Lok-To Sham & Min Luo, 2023. "Regulation of the cell division hydrolase RipC by the FtsEX system in Mycobacterium tuberculosis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24965-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.