IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-24638-z.html
   My bibliography  Save this article

A generalizable and accessible approach to machine learning with global satellite imagery

Author

Listed:
  • Esther Rolf

    (Electrical Engineering & Computer Science Department
    Goldman School of Public Policy)

  • Jonathan Proctor

    (Harvard University)

  • Tamma Carleton

    (UC Santa Barbara
    National Bureau of Economic Research)

  • Ian Bolliger

    (Goldman School of Public Policy
    Rhodium Group)

  • Vaishaal Shankar

    (Electrical Engineering & Computer Science Department)

  • Miyabi Ishihara

    (Goldman School of Public Policy
    Statistics Department)

  • Benjamin Recht

    (Electrical Engineering & Computer Science Department)

  • Solomon Hsiang

    (Goldman School of Public Policy
    National Bureau of Economic Research
    Centre for Economic Policy Research)

Abstract

Combining satellite imagery with machine learning (SIML) has the potential to address global challenges by remotely estimating socioeconomic and environmental conditions in data-poor regions, yet the resource requirements of SIML limit its accessibility and use. We show that a single encoding of satellite imagery can generalize across diverse prediction tasks (e.g., forest cover, house price, road length). Our method achieves accuracy competitive with deep neural networks at orders of magnitude lower computational cost, scales globally, delivers label super-resolution predictions, and facilitates characterizations of uncertainty. Since image encodings are shared across tasks, they can be centrally computed and distributed to unlimited researchers, who need only fit a linear regression to their own ground truth data in order to achieve state-of-the-art SIML performance.

Suggested Citation

  • Esther Rolf & Jonathan Proctor & Tamma Carleton & Ian Bolliger & Vaishaal Shankar & Miyabi Ishihara & Benjamin Recht & Solomon Hsiang, 2021. "A generalizable and accessible approach to machine learning with global satellite imagery," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24638-z
    DOI: 10.1038/s41467-021-24638-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-24638-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-24638-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katarzyna Kopczewska, 2022. "Spatial machine learning: new opportunities for regional science," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 713-755, June.
    2. Jonathan Leslie, 2023. "?Seeing? the Future: Improving Macroeconomic Forecasts with Spatial Data and Recurrent Convolutional Neural Networks," CAEPR Working Papers 2023-003 Classification-C, Center for Applied Economics and Policy Research, Department of Economics, Indiana University Bloomington.
    3. Adel Daoud & Felipe Jordán & Makkunda Sharma & Fredrik Johansson & Devdatt Dubhashi & Sourabh Paul & Subhashis Banerjee, 2023. "Using Satellite Images and Deep Learning to Measure Health and Living Standards in India," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 167(1), pages 475-505, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24638-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.