SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-24521-x
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Federico Armando & Georg Beythien & Franziska K. Kaiser & Lisa Allnoch & Laura Heydemann & Malgorzata Rosiak & Svenja Becker & Mariana Gonzalez-Hernandez & Mart M. Lamers & Bart L. Haagmans & Kate Gui, 2022. "SARS-CoV-2 Omicron variant causes mild pathology in the upper and lower respiratory tract of hamsters," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Catherine F. Hatton & Rachel A. Botting & Maria Emilia Dueñas & Iram J. Haq & Bernard Verdon & Benjamin J. Thompson & Jarmila Stremenova Spegarova & Florian Gothe & Emily Stephenson & Aaron I. Gardner, 2021. "Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Sungmin Moon & Seunghan Han & In-Hwan Jang & Jaechan Ryu & Min-Seok Rha & Hyung-Ju Cho & Sang Sun Yoon & Ki Taek Nam & Chang-Hoon Kim & Man-Seong Park & Je Kyung Seong & Won-Jae Lee & Joo-Heon Yoon & , 2024. "Airway epithelial CD47 plays a critical role in inducing influenza virus-mediated bacterial super-infection," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Delphine Planas & Isabelle Staropoli & Vincent Michel & Frederic Lemoine & Flora Donati & Matthieu Prot & Francoise Porrot & Florence Guivel-Benhassine & Banujaa Jeyarajah & Angela Brisebarre & Océane, 2024. "Distinct evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 lineages combining increased fitness and antibody evasion," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
- Andreia L. Pinto & Ranjit K. Rai & Jonathan C. Brown & Paul Griffin & James R. Edgar & Anand Shah & Aran Singanayagam & Claire Hogg & Wendy S. Barclay & Clare E. Futter & Thomas Burgoyne, 2022. "Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-24521-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.