IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23920-4.html
   My bibliography  Save this article

Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization

Author

Listed:
  • Zhi-Hua Liu

    (Texas A&M University
    Texas A&M University)

  • Naijia Hao

    (University of Tennessee)

  • Yun-Yan Wang

    (University of Tennessee)

  • Chang Dou

    (University of Washington)

  • Furong Lin

    (Texas A&M University
    Texas A&M University)

  • Rongchun Shen

    (Washington State University)

  • Renata Bura

    (University of Washington)

  • David B. Hodge

    (Montana State University)

  • Bruce E. Dale

    (Michigan State University)

  • Arthur J. Ragauskas

    (University of Tennessee
    Oak Ridge National Laboratory
    The University of Tennessee Institute of Agriculture)

  • Bin Yang

    (Washington State University)

  • Joshua S. Yuan

    (Texas A&M University
    Texas A&M University)

Abstract

Biological lignin valorization has emerged as a major solution for sustainable and cost-effective biorefineries. However, current biorefineries yield lignin with inadequate fractionation for bioconversion, yet substantial changes of these biorefinery designs to focus on lignin could jeopardize carbohydrate efficiency and increase capital costs. We resolve the dilemma by designing ‘plug-in processes of lignin’ with the integration of leading pretreatment technologies. Substantial improvement of lignin bioconversion and synergistic enhancement of carbohydrate processing are achieved by solubilizing lignin via lowering molecular weight and increasing hydrophilic groups, addressing the dilemma of lignin- or carbohydrate-first scenarios. The plug-in processes of lignin could enable minimum polyhydroxyalkanoate selling price at as low as $6.18/kg. The results highlight the potential to achieve commercial production of polyhydroxyalkanoates as a co-product of cellulosic ethanol. Here, we show that the plug-in processes of lignin could transform biorefinery design toward sustainability by promoting carbon efficiency and optimizing the total capital cost.

Suggested Citation

  • Zhi-Hua Liu & Naijia Hao & Yun-Yan Wang & Chang Dou & Furong Lin & Rongchun Shen & Renata Bura & David B. Hodge & Bruce E. Dale & Arthur J. Ragauskas & Bin Yang & Joshua S. Yuan, 2021. "Transforming biorefinery designs with ‘Plug-In Processes of Lignin’ to enable economic waste valorization," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23920-4
    DOI: 10.1038/s41467-021-23920-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23920-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23920-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Ruo-Ying & Lan, Hai-Na & Liu, Zhi-Hua & Li, Bing-Zhi & Yuan, Ying-Jin, 2024. "Microbial valorization of lignin toward coumarins: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    2. Xu, Lingxia & Liaqat, Fakhra & Sun, Jianzhong & Khazi, Mahammed Ilyas & Xie, Rongrong & Zhu, Daochen, 2024. "Advances in the vanillin synthesis and biotransformation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    3. Sheng, Haoqiang & Huang, Xiaobin & Hu, Wenbin & Ji, Yuan & Chen, Junming & Xie, Mingyun & He, Miaoshen & Zhang, Bo & Liu, Hong, 2023. "Stability and combustion performance enhancement of ethanol/kerosene fuel by carbonized poly[cyclotriphosphazene-co-(4,4′-sulfonyldiphenol)] nanotubes via biomimetic hydrogen bonding strategy," Energy, Elsevier, vol. 282(C).
    4. Yiquan Zhao & Le Xue & Zhiyi Huang & Zixian Lei & Shiyu Xie & Zhenzhen Cai & Xinran Rao & Ze Zheng & Ning Xiao & Xiaoyu Zhang & Fuying Ma & Hongbo Yu & Shangxian Xie, 2024. "Lignin valorization to bioplastics with an aromatic hub metabolite-based autoregulation system," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23920-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.