IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23605-y.html
   My bibliography  Save this article

Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils

Author

Listed:
  • Ylva Lekberg

    (MPG Ranch
    University of Montana)

  • Carlos A. Arnillas

    (University of Toronto – Scarborough)

  • Elizabeth T. Borer

    (University of Minnesota)

  • Lorinda S. Bullington

    (MPG Ranch)

  • Noah Fierer

    (University of Colorado
    Cooperative Institute for Research in Environmental Sciences, University of Colorado)

  • Peter G. Kennedy

    (University of Minnesota)

  • Jonathan W. Leff

    (Independent Researcher)

  • Angela D. Luis

    (University of Montana)

  • Eric W. Seabloom

    (University of Minnesota)

  • Jeremiah A. Henning

    (University of Minnesota
    University of South Alabama)

Abstract

Ecosystems across the globe receive elevated inputs of nutrients, but the consequences of this for soil fungal guilds that mediate key ecosystem functions remain unclear. We find that nitrogen and phosphorus addition to 25 grasslands distributed across four continents promotes the relative abundance of fungal pathogens, suppresses mutualists, but does not affect saprotrophs. Structural equation models suggest that responses are often indirect and primarily mediated by nutrient-induced shifts in plant communities. Nutrient addition also reduces co-occurrences within and among fungal guilds, which could have important consequences for belowground interactions. Focusing only on plots that received no nutrient addition, soil properties influence pathogen abundance globally, whereas plant community characteristics influence mutualists, and climate influence saprotrophs. We show consistent, guild-level responses that enhance our ability to predict shifts in soil function related to anthropogenic eutrophication, which can have longer-term consequences for plant communities.

Suggested Citation

  • Ylva Lekberg & Carlos A. Arnillas & Elizabeth T. Borer & Lorinda S. Bullington & Noah Fierer & Peter G. Kennedy & Jonathan W. Leff & Angela D. Luis & Eric W. Seabloom & Jeremiah A. Henning, 2021. "Nitrogen and phosphorus fertilization consistently favor pathogenic over mutualistic fungi in grassland soils," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23605-y
    DOI: 10.1038/s41467-021-23605-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23605-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23605-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric W. Seabloom & Maria C. Caldeira & Kendi F. Davies & Linda Kinkel & Johannes M. H. Knops & Kimberly J. Komatsu & Andrew S. MacDougall & Georgiana May & Michael Millican & Joslin L. Moore & Luis I., 2023. "Globally consistent response of plant microbiome diversity across hosts and continents to soil nutrients and herbivores," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. J. M. Lavallee & M. Chomel & N. Alvarez Segura & F. Castro & T. Goodall & M. Magilton & J. M. Rhymes & M. Delgado-Baquerizo & R. I. Griffiths & E. M. Baggs & T. Caruso & F. T. Vries & M. Emmerson & D., 2024. "Land management shapes drought responses of dominant soil microbial taxa across grasslands," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    3. Zhu, Jinjin & Niu, Wenquan & Zhang, Zhenhua & Siddique, Kadambot H.M. & Dan Sun, & Yang, Runya, 2022. "Distinct roles for soil bacterial and fungal communities associated with the availability of carbon and phosphorus under aerated drip irrigation," Agricultural Water Management, Elsevier, vol. 274(C).
    4. Anu Eskelinen & Maria-Theresa Jessen & Hector A. Bahamonde & Jonathan D. Bakker & Elizabeth T. Borer & Maria C. Caldeira & W. Stanley Harpole & Meiyu Jia & Luciola S. Lannes & Carla Nogueira & Harry O, 2023. "Herbivory and nutrients shape grassland soil seed banks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Guangzhou Wang & Haley M. Burrill & Laura Y. Podzikowski & Maarten B. Eppinga & Fusuo Zhang & Junling Zhang & Peggy A. Schultz & James D. Bever, 2023. "Dilution of specialist pathogens drives productivity benefits from diversity in plant mixtures," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23605-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.