Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning
Author
Abstract
Suggested Citation
DOI: 10.1038/s41467-021-23576-0
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dipankar Baisya & Adithya Ramesh & Cory Schwartz & Stefano Lonardi & Ian Wheeldon, 2022. "Genome-wide functional screens enable the prediction of high activity CRISPR-Cas9 and -Cas12a guides in Yarrowia lipolytica," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Peter C. DeWeirdt & Abby V. McGee & Fengyi Zheng & Ifunanya Nwolah & Mudra Hegde & John G. Doench, 2022. "Accounting for small variations in the tracrRNA sequence improves sgRNA activity predictions for CRISPR screening," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Daniela Ben-Tov & Fabrizio Mafessoni & Amit Cucuy & Arik Honig & Cathy Melamed-Bessudo & Avraham A. Levy, 2024. "Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Jianli Tao & Daniel E. Bauer & Roberto Chiarle, 2023. "Assessing and advancing the safety of CRISPR-Cas tools: from DNA to RNA editing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Greg J. Duncan & Sam D. Ingram & Katie Emberley & Jo Hill & Christian Cordano & Ahmed Abdelhak & Michael McCane & Jennifer E. Jenks & Nora Jabassini & Kirtana Ananth & Skylar J. Ferrara & Brittany Ste, 2024. "Remyelination protects neurons from DLK-mediated neurodegeneration," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
- Jason Fontana & David Sparkman-Yager & Ian Faulkner & Ryan Cardiff & Cholpisit Kiattisewee & Aria Walls & Tommy G. Primo & Patrick C. Kinnunen & Hector Garcia Martin & Jesse G. Zalatan & James M. Caro, 2024. "Guide RNA structure design enables combinatorial CRISPRa programs for biosynthetic profiling," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
- Giulia I. Corsi & Kunli Qu & Ferhat Alkan & Xiaoguang Pan & Yonglun Luo & Jan Gorodkin, 2022. "CRISPR/Cas9 gRNA activity depends on free energy changes and on the target PAM context," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23576-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.