IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23369-5.html
   My bibliography  Save this article

Manipulating anion intercalation enables a high-voltage aqueous dual ion battery

Author

Listed:
  • Zhaodong Huang

    (City University of Hong Kong)

  • Yue Hou

    (City University of Hong Kong)

  • Tairan Wang

    (City University of Hong Kong)

  • Yuwei Zhao

    (City University of Hong Kong)

  • Guojin Liang

    (City University of Hong Kong)

  • Xinliang Li

    (City University of Hong Kong)

  • Ying Guo

    (City University of Hong Kong)

  • Qi Yang

    (City University of Hong Kong)

  • Ze Chen

    (City University of Hong Kong)

  • Qing Li

    (City University of Hong Kong)

  • Longtao Ma

    (City University of Hong Kong)

  • Jun Fan

    (City University of Hong Kong)

  • Chunyi Zhi

    (City University of Hong Kong)

Abstract

Aqueous graphite-based dual ion batteries have unique superiorities in stationary energy storage systems due to their non-transition metal configuration and safety properties. However, there is an absence of thorough study of the interactions between anions and water molecules and between anions and electrode materials, which is essential to achieve high output voltage. Here we reveal the four-stage intercalation process and energy conversion in a graphite cathode of anions with different configurations. The difference between the intercalation energy and hydration energy of bis(trifluoromethane)sulfonimide makes the best use of the electrochemical stability window of its electrolyte and delivers a high intercalation potential, while BF4− and CF3SO3− do not exhibit a satisfactory potential because the graphite intercalation potential of BF4− is inferior and the graphite intercalation potential of CF3SO3− exceeds the voltage window of its electrolyte. An aqueous dual ion battery based on the intercalation behaviors of bis(trifluoromethane)sulfonimide anions into a graphite cathode exhibits a high voltage of 2.2 V together with a specific energy of 242.74 Wh kg−1. This work provides clear guidance for the voltage plateau manipulation of anion intercalation into two-dimensional materials.

Suggested Citation

  • Zhaodong Huang & Yue Hou & Tairan Wang & Yuwei Zhao & Guojin Liang & Xinliang Li & Ying Guo & Qi Yang & Ze Chen & Qing Li & Longtao Ma & Jun Fan & Chunyi Zhi, 2021. "Manipulating anion intercalation enables a high-voltage aqueous dual ion battery," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23369-5
    DOI: 10.1038/s41467-021-23369-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23369-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23369-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Songshan Bi & Shuai Wang & Fang Yue & Zhiwei Tie & Zhiqiang Niu, 2021. "A rechargeable aqueous manganese-ion battery based on intercalation chemistry," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Shuo Li & Yong Zhang & Xiaoping Liang & Haomin Wang & Haojie Lu & Mengjia Zhu & Huimin Wang & Mingchao Zhang & Xinping Qiu & Yafeng Song & Yingying Zhang, 2022. "Humidity-sensitive chemoelectric flexible sensors based on metal-air redox reaction for health management," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Davood Sabaghi & Zhiyong Wang & Preeti Bhauriyal & Qiongqiong Lu & Ahiud Morag & Daria Mikhailovia & Payam Hashemi & Dongqi Li & Christof Neumann & Zhongquan Liao & Anna Maria Dominic & Ali Shaygan Ni, 2023. "Ultrathin positively charged electrode skin for durable anion-intercalation battery chemistries," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23369-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.