IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-23368-6.html
   My bibliography  Save this article

Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy

Author

Listed:
  • Bing Han

    (Southern University of Science and Technology
    Peking University)

  • Yucheng Zou

    (Southern University of Science and Technology)

  • Zhen Zhang

    (Southern University of Science and Technology)

  • Xuming Yang

    (Southern University of Science and Technology)

  • Xiaobo Shi

    (Southern University of Science and Technology)

  • Hong Meng

    (Peking University)

  • Hong Wang

    (Southern University of Science and Technology)

  • Kang Xu

    (US Army Research Laboratory)

  • Yonghong Deng

    (Southern University of Science and Technology)

  • Meng Gu

    (Southern University of Science and Technology)

Abstract

Cryogenic transmission electron microscopy (cryo-TEM) is a valuable tool recently proposed to investigate battery electrodes. Despite being employed for Li-based battery materials, cryo-TEM measurements for Na-based electrochemical energy storage systems are not commonly reported. In particular, elucidating the chemical and morphological behavior of the Na-metal electrode in contact with a non-aqueous liquid electrolyte solution could provide useful insights that may lead to a better understanding of metal cells during operation. Here, using cryo-TEM, we investigate the effect of fluoroethylene carbonate (FEC) additive on the solid electrolyte interphase (SEI) structure of a Na-metal electrode. Without FEC, the NaPF6-containing carbonate-based electrolyte reacts with the metal electrode to produce an unstable SEI, rich in Na2CO3 and Na3PO4, which constantly consumes the sodium reservoir of the cell during cycling. When FEC is used, the Na-metal electrode forms a multilayer SEI structure comprising an outer NaF-rich amorphous phase and an inner Na3PO4 phase. This layered structure stabilizes the SEI and prevents further reactions between the electrolyte and the Na metal.

Suggested Citation

  • Bing Han & Yucheng Zou & Zhen Zhang & Xuming Yang & Xiaobo Shi & Hong Meng & Hong Wang & Kang Xu & Yonghong Deng & Meng Gu, 2021. "Probing the Na metal solid electrolyte interphase via cryo-transmission electron microscopy," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23368-6
    DOI: 10.1038/s41467-021-23368-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-23368-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-23368-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chuanlong Wang & Akila C. Thenuwara & Jianmin Luo & Pralav P. Shetty & Matthew T. McDowell & Haoyu Zhu & Sergio Posada-PĂ©rez & Hui Xiong & Geoffroy Hautier & Weiyang Li, 2022. "Extending the low-temperature operation of sodium metal batteries combining linear and cyclic ether-based electrolyte solutions," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Chutao Wang & Zongqiang Sun & Yaqing Liu & Lin Liu & Xiaoting Yin & Qing Hou & Jingmin Fan & Jiawei Yan & Ruming Yuan & Mingsen Zheng & Quanfeng Dong, 2024. "A weakly coordinating-intervention strategy for modulating Na+ solvation sheathes and constructing robust interphase in sodium-metal batteries," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Jelena Popovic, 2021. "The importance of electrode interfaces and interphases for rechargeable metal batteries," Nature Communications, Nature, vol. 12(1), pages 1-5, December.
    4. Yue Chen & Wenkai Wu & Sergio Gonzalez-Munoz & Leonardo Forcieri & Charlie Wells & Samuel P. Jarvis & Fangling Wu & Robert Young & Avishek Dey & Mark Isaacs & Mangayarkarasi Nagarathinam & Robert G. P, 2023. "Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-23368-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.