IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-22488-3.html
   My bibliography  Save this article

Chromatic micromaps in primary visual cortex

Author

Listed:
  • Soumya Chatterjee

    (Harvard Medical School
    Allen Institute for Brain Science)

  • Kenichi Ohki

    (Harvard Medical School
    University of Tokyo School of Medicine)

  • R. Clay Reid

    (Harvard Medical School
    Allen Institute for Brain Science)

Abstract

The clustering of neurons with similar response properties is a conspicuous feature of neocortex. In primary visual cortex (V1), maps of several properties like orientation preference are well described, but the functional architecture of color, central to visual perception in trichromatic primates, is not. Here we used two-photon calcium imaging in macaques to examine the fine structure of chromatic representation and found that neurons responsive to spatially uniform, chromatic stimuli form unambiguous clusters that coincide with blobs. Further, these responsive groups have marked substructure, segregating into smaller ensembles or micromaps with distinct chromatic signatures that appear columnar in upper layer 2/3. Spatially structured chromatic stimuli revealed maps built on the same micromap framework but with larger subdomains that go well beyond blobs. We conclude that V1 has an architecture for color representation that switches between blobs and a combined blob/interblob system based on the spatial content of the visual scene.

Suggested Citation

  • Soumya Chatterjee & Kenichi Ohki & R. Clay Reid, 2021. "Chromatic micromaps in primary visual cortex," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22488-3
    DOI: 10.1038/s41467-021-22488-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-22488-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-22488-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yujie Wu & Minghui Zhao & Haoyun Deng & Tian Wang & Yumeng Xin & Weifeng Dai & Jiancao Huang & Tingting Zhou & Xiaowen Sun & Ning Liu & Dajun Xing, 2024. "The neural origin for asymmetric coding of surface color in the primate visual cortex," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Peichao Li & Anupam K. Garg & Li A. Zhang & Mohammad S. Rashid & Edward M. Callaway, 2022. "Cone opponent functional domains in primary visual cortex combine signals for color appearance mechanisms," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-22488-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.