IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21687-2.html
   My bibliography  Save this article

Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response

Author

Listed:
  • Zdenek Andrysik

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

  • Heather Bender

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

  • Matthew D. Galbraith

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus)

  • Joaquin M. Espinosa

    (University of Colorado Anschutz Medical Campus
    University of Colorado Anschutz Medical Campus
    University of Colorado Boulder)

Abstract

Cellular adaptation to hypoxia is a hallmark of cancer, but the relative contribution of hypoxia-inducible factors (HIFs) versus other oxygen sensors to tumorigenesis is unclear. We employ a multi-omics pipeline including measurements of nascent RNA to characterize transcriptional changes upon acute hypoxia. We identify an immediate early transcriptional response that is strongly dependent on HIF1A and the kinase activity of its cofactor CDK8, includes indirect repression of MYC targets, and is highly conserved across cancer types. HIF1A drives this acute response via conserved high-occupancy enhancers. Genetic screen data indicates that, in normoxia, HIF1A displays strong cell-autonomous tumor suppressive effects through a gene module mediating mTOR inhibition. Conversely, in advanced malignancies, expression of a module of HIF1A targets involved in collagen remodeling is associated with poor prognosis across diverse cancer types. In this work, we provide a valuable resource for investigating context-dependent roles of HIF1A and its targets in cancer biology.

Suggested Citation

  • Zdenek Andrysik & Heather Bender & Matthew D. Galbraith & Joaquin M. Espinosa, 2021. "Multi-omics analysis reveals contextual tumor suppressive and oncogenic gene modules within the acute hypoxic response," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21687-2
    DOI: 10.1038/s41467-021-21687-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21687-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21687-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shaun Scaramuzza & Rebecca M. Jones & Martina Muste Sadurni & Alicja Reynolds-Winczura & Divyasree Poovathumkadavil & Abigail Farrell & Toyoaki Natsume & Patricia Rojas & Cyntia Fernandez Cuesta & Mas, 2023. "TRAIP resolves DNA replication-transcription conflicts during the S-phase of unperturbed cells," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Mary C. Bedard & Tafadzwa Chihanga & Adrean Carlile & Robert Jackson & Marion G. Brusadelli & Denis Lee & Andrew VonHandorf & Mark Rochman & Phillip J. Dexheimer & Jeffrey Chalmers & Gerard Nuovo & Ma, 2023. "Single cell transcriptomic analysis of HPV16-infected epithelium identifies a keratinocyte subpopulation implicated in cancer," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21687-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.