IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-21464-1.html
   My bibliography  Save this article

Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases

Author

Listed:
  • Hyunji Lee

    (Center for Genome Engineering, Institute for Basic Science)

  • Seonghyun Lee

    (Center for Genome Engineering, Institute for Basic Science)

  • Gayoung Baek

    (Center for Genome Engineering, Institute for Basic Science)

  • Annie Kim

    (Center for Genome Engineering, Institute for Basic Science
    Seoul National University)

  • Beum-Chang Kang

    (Center for Genome Engineering, Institute for Basic Science)

  • Huiyun Seo

    (Center for Genome Engineering, Institute for Basic Science)

  • Jin-Soo Kim

    (Center for Genome Engineering, Institute for Basic Science
    Seoul National University)

Abstract

DddA-derived cytosine base editors (DdCBEs), composed of the split interbacterial toxin DddAtox, transcription activator-like effector (TALE), and uracil glycosylase inhibitor (UGI), enable targeted C-to-T base conversions in mitochondrial DNA (mtDNA). Here, we demonstrate highly efficient mtDNA editing in mouse embryos using custom-designed DdCBEs. We target the mitochondrial gene, MT-ND5 (ND5), which encodes a subunit of NADH dehydrogenase that catalyzes NADH dehydration and electron transfer to ubiquinone, to obtain several mtDNA mutations, including m.G12918A associated with human mitochondrial diseases and m.C12336T that incorporates a premature stop codon, creating mitochondrial disease models in mice and demonstrating a potential for the treatment of mitochondrial disorders.

Suggested Citation

  • Hyunji Lee & Seonghyun Lee & Gayoung Baek & Annie Kim & Beum-Chang Kang & Huiyun Seo & Jin-Soo Kim, 2021. "Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21464-1
    DOI: 10.1038/s41467-021-21464-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-21464-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-21464-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Friedrich Fauser & Bhakti N. Kadam & Sebastian Arangundy-Franklin & Jessica E. Davis & Vishvesha Vaidya & Nicola J. Schmidt & Garrett Lew & Danny F. Xia & Rakshaa Mureli & Colman Ng & Yuanyue Zhou & N, 2024. "Compact zinc finger architecture utilizing toxin-derived cytidine deaminases for highly efficient base editing in human cells," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Haifeng Sun & Zhaojun Wang & Limini Shen & Yeling Feng & Lu Han & Xuezhen Qian & Runde Meng & Kangming Ji & Dong Liang & Fei Zhou & Xin Lou & Jun Zhang & Bin Shen, 2023. "Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Pedro Silva-Pinheiro & Pavel A. Nash & Lindsey Van Haute & Christian D. Mutti & Keira Turner & Michal Minczuk, 2022. "In vivo mitochondrial base editing via adeno-associated viral delivery to mouse post-mitotic tissue," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Young Geun Mok & Ji Min Lee & Eugene Chung & Jaesuk Lee & Kayeong Lim & Sung-Ik Cho & Jin-Soo Kim, 2022. "Base editing in human cells with monomeric DddA-TALE fusion deaminases," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-21464-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.