IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20864-z.html
   My bibliography  Save this article

A binding protein regulates myosin-7a dimerization and actin bundle assembly

Author

Listed:
  • Rong Liu

    (National Institutes of Health)

  • Neil Billington

    (National Institutes of Health)

  • Yi Yang

    (National Institutes of Health
    Hunan Agricultural University)

  • Charles Bond

    (National Institutes of Health)

  • Amy Hong

    (National Institutes of Health)

  • Verl Siththanandan

    (National Institutes of Health)

  • Yasuharu Takagi

    (National Institutes of Health)

  • James R. Sellers

    (National Institutes of Health)

Abstract

Myosin-7a, despite being monomeric in isolation, plays roles in organizing actin-based cell protrusions such as filopodia, microvilli and stereocilia, as well as transporting cargoes within them. Here, we identify a binding protein for Drosophila myosin-7a termed M7BP, and describe how M7BP assembles myosin-7a into a motile complex that enables cargo translocation and actin cytoskeletal remodeling. M7BP binds to the autoinhibitory tail of myosin-7a, extending the molecule and activating its ATPase activity. Single-molecule reconstitution show that M7BP enables robust motility by complexing with myosin-7a as 2:2 translocation dimers in an actin-regulated manner. Meanwhile, M7BP tethers actin, enhancing complex’s processivity and driving actin-filament alignment during processive runs. Finally, we show that myosin-7a-M7BP complex assembles actin bundles and filopodia-like protrusions while migrating along them in living cells. Together, these findings provide insights into the mechanisms by which myosin-7a functions in actin protrusions.

Suggested Citation

  • Rong Liu & Neil Billington & Yi Yang & Charles Bond & Amy Hong & Verl Siththanandan & Yasuharu Takagi & James R. Sellers, 2021. "A binding protein regulates myosin-7a dimerization and actin bundle assembly," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20864-z
    DOI: 10.1038/s41467-020-20864-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20864-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20864-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Louise Canon & Carlos Kikuti & Vicente J. Planelles-Herrero & Tianming Lin & Franck Mayeux & Helena Sirkia & Young il Lee & Leila Heidsieck & Léonid Velikovsky & Amandine David & Xiaoyan Liu & Dihia M, 2023. "How myosin VI traps its off-state, is activated and dimerizes," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Xiangyu Fan & Richard J. McKenney, 2023. "Control of motor landing and processivity by the CAP-Gly domain in the KIF13B tail," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20864-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.