IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20645-8.html
   My bibliography  Save this article

Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight

Author

Listed:
  • Qiang Ma

    (Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University)

  • Jinshuai Song

    (Zhengzhou University)

  • Xun Zhang

    (Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University)

  • Yu Jiang

    (Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University)

  • Li Ji

    (Grubbs Institute, Southern University of Science and Technology)

  • Saihu Liao

    (Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University
    Fuzhou University
    Beijing National Laboratory of Molecular Science (BNLMS))

Abstract

Organocatalytic atom transfer radical polymerization (O-ATRP) is recently emerging as an appealing method for the synthesis of metal-free polymer materials with well-defined microstructures and architectures. However, the development of highly effective catalysts that can be employed at a practical low loading are still a challenging task. Herein, we introduce a catalyst design logic based on heteroatom-doping of polycyclic arenes, which leads to the discovery of oxygen-doped anthanthrene (ODA) as highly effective organic photoredox catalysts for O-ATRP. In comparison with known organocatalysts, ODAs feature strong visible-light absorption together with high molar extinction coefficient (ε455nm up to 23,950 M–1 cm–1), which allow for the establishment of a controlled polymerization under sunlight at low ppm levels of catalyst loading.

Suggested Citation

  • Qiang Ma & Jinshuai Song & Xun Zhang & Yu Jiang & Li Ji & Saihu Liao, 2021. "Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20645-8
    DOI: 10.1038/s41467-020-20645-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20645-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20645-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wang & Yupo Xu & Quan Zuo & Haojie Dai & Lei Huang & Meng Zhang & Yongli Zheng & Chunyang Yu & Shaodong Zhang & Yongfeng Zhou, 2022. "Visible light-controlled living cationic polymerization of methoxystyrene," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    2. Wei-Wei Fang & Gui-Yu Yang & Zi-Hui Fan & Zi-Chao Chen & Xun-Liang Hu & Zhen Zhan & Irshad Hussain & Yang Lu & Tao He & Bi-En Tan, 2023. "Conjugated cross-linked phosphine as broadband light or sunlight-driven photocatalyst for large-scale atom transfer radical polymerization," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20645-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.