IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20331-9.html
   My bibliography  Save this article

A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion

Author

Listed:
  • Yiping Zou

    (Hunan University)

  • Tingting Liu

    (Hunan University)

  • Qijun Du

    (Hunan University)

  • Yingying Li

    (Hunan University)

  • Haibo Yi

    (Hunan University)

  • Xing Zhou

    (Hunan University)

  • Zhuxin Li

    (Hunan University)

  • Lujie Gao

    (Hunan University)

  • Lan Zhang

    (Hunan University)

  • Xiao Liang

    (Hunan University
    Hunan University)

Abstract

Electrochemically reversible redox couples that embrace more electron transfer at a higher potential are the eternal target for energy storage batteries. Here, we report a four-electron aqueous zinc-iodine battery by activating the highly reversible I2/I+ couple (1.83 V vs. Zn/Zn2+) in addition to the typical I−/I2 couple (1.29 V). This is achieved by intensive solvation of the aqueous electrolyte to yield ICl inter-halogens and to suspend its hydrolysis. Experimental characterization and modelling reveal that limited water activity and sufficient free chloride ions in the electrolyte are crucial for the four-electron process. The merits of the electrolyte also afford to stabilize Zn anode, leading to a reliable Zn-I2 aqueous battery of 6000 cycles. Owing to high operational voltage and capacity, energy density up to 750 Wh kg−1 based on iodine mass was achieved (15–20 wt% iodine in electrode). It pushes the Zn-I2 battery to a superior level among these available aqueous batteries.

Suggested Citation

  • Yiping Zou & Tingting Liu & Qijun Du & Yingying Li & Haibo Yi & Xing Zhou & Zhuxin Li & Lujie Gao & Lan Zhang & Xiao Liang, 2021. "A four-electron Zn-I2 aqueous battery enabled by reversible I−/I2/I+ conversion," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20331-9
    DOI: 10.1038/s41467-020-20331-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20331-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20331-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenjiao Ma & Tingting Liu & Chen Xu & Chengjun Lei & Pengjie Jiang & Xin He & Xiao Liang, 2023. "A twelve-electron conversion iodine cathode enabled by interhalogen chemistry in aqueous solution," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Guojin Liang & Bochun Liang & Ao Chen & Jiaxiong Zhu & Qing Li & Zhaodong Huang & Xinliang Li & Ying Wang & Xiaoqi Wang & Bo Xiong & Xu Jin & Shengchi Bai & Jun Fan & Chunyi Zhi, 2023. "Development of rechargeable high-energy hybrid zinc-iodine aqueous batteries exploiting reversible chlorine-based redox reaction," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Zishuai Zhang & Yilong Zhu & Miao Yu & Yan Jiao & Yan Huang, 2022. "Development of long lifespan high-energy aqueous organic||iodine rechargeable batteries," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20331-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.