IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-19916-1.html
   My bibliography  Save this article

Finite-size security of continuous-variable quantum key distribution with digital signal processing

Author

Listed:
  • Takaya Matsuura

    (The University of Tokyo)

  • Kento Maeda

    (The University of Tokyo)

  • Toshihiko Sasaki

    (The University of Tokyo
    The University of Tokyo)

  • Masato Koashi

    (The University of Tokyo
    The University of Tokyo)

Abstract

In comparison to conventional discrete-variable (DV) quantum key distribution (QKD), continuous-variable (CV) QKD with homodyne/heterodyne measurements has distinct advantages of lower-cost implementation and affinity to wavelength division multiplexing. On the other hand, its continuous nature makes it harder to accommodate to practical signal processing, which is always discretized, leading to lack of complete security proofs so far. Here we propose a tight and robust method of estimating fidelity of an optical pulse to a coherent state via heterodyne measurements. We then construct a binary phase modulated CV-QKD protocol and prove its security in the finite-key-size regime against general coherent attacks, based on proof techniques of DV QKD. Such a complete security proof is indispensable for exploiting the benefits of CV QKD.

Suggested Citation

  • Takaya Matsuura & Kento Maeda & Toshihiko Sasaki & Masato Koashi, 2021. "Finite-size security of continuous-variable quantum key distribution with digital signal processing," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-19916-1
    DOI: 10.1038/s41467-020-19916-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19916-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19916-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nitin Jain & Hou-Man Chin & Hossein Mani & Cosmo Lupo & Dino Solar Nikolic & Arne Kordts & Stefano Pirandola & Thomas Brochmann Pedersen & Matthias Kolb & Bernhard Ă–mer & Christoph Pacher & Tobias Geh, 2022. "Practical continuous-variable quantum key distribution with composable security," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-19916-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.