IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-20109-z.html
   My bibliography  Save this article

Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures

Author

Listed:
  • Lei Fan

    (The Hong Kong Polytechnic University)

  • Tao Yang

    (City University of Hong Kong)

  • Yilu Zhao

    (City University of Hong Kong)

  • Junhua Luan

    (City University of Hong Kong)

  • Gang Zhou

    (Chinese Academy of Sciences)

  • Hao Wang

    (Chinese Academy of Sciences)

  • Zengbao Jiao

    (The Hong Kong Polytechnic University)

  • Chain-Tsuan Liu

    (City University of Hong Kong)

Abstract

Nano-lamellar materials with ultrahigh strengths and unusual physical properties are of technological importance for structural applications. However, these materials generally suffer from low tensile ductility, which severely limits their practical utility. Here we show that markedly enhanced tensile ductility can be achieved in coherent nano-lamellar alloys, which exhibit an unprecedented combination of over 2 GPa yield strength and 16% uniform tensile ductility. The ultrahigh strength originates mainly from the lamellar boundary strengthening, whereas the large ductility correlates to a progressive work-hardening mechanism regulated by the unique nano-lamellar architecture. The coherent lamellar boundaries facilitate the dislocation transmission, which eliminates the stress concentrations at the boundaries. Meanwhile, deformation-induced hierarchical stacking-fault networks and associated high-density Lomer-Cottrell locks enhance the work hardening response, leading to unusually large tensile ductilities. The coherent nano-lamellar strategy can potentially be applied to many other alloys and open new avenues for designing ultrastrong yet ductile materials for technological applications.

Suggested Citation

  • Lei Fan & Tao Yang & Yilu Zhao & Junhua Luan & Gang Zhou & Hao Wang & Zengbao Jiao & Chain-Tsuan Liu, 2020. "Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20109-z
    DOI: 10.1038/s41467-020-20109-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20109-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20109-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fenghui Duan & Qian Li & Zhihao Jiang & Lin Zhou & Junhua Luan & Zheling Shen & Weihua Zhou & Shiyuan Zhang & Jie Pan & Xin Zhou & Tao Yang & Jian Lu, 2024. "An order-disorder core-shell strategy for enhanced work-hardening capability and ductility in nanostructured alloys," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Tielong Han & Chao Hou & Zhi Zhao & Zengbao Jiao & Yurong Li & Shuang Jiang & Hao Lu & Haibin Wang & Xuemei Liu & Zuoren Nie & Xiaoyan Song, 2024. "Simultaneous enhancement of strength and conductivity via self-assembled lamellar architecture," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-20109-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.