IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19969-2.html
   My bibliography  Save this article

Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy

Author

Listed:
  • F. T. Sparks

    (Columbia University
    Columbia University
    Columbia University)

  • Z. Liao

    (Columbia University
    Columbia University
    Columbia University)

  • W. Li

    (Columbia University
    Columbia University
    Columbia University)

  • A. Grosmark

    (Columbia University
    Columbia University
    Columbia University)

  • I. Soltesz

    (Stanford University)

  • A. Losonczy

    (Columbia University
    Columbia University
    Columbia University)

Abstract

Temporal lobe epilepsy (TLE) is characterized by recurrent seizures driven by synchronous neuronal activity. The reorganization of the dentate gyrus (DG) in TLE may create pathological conduction pathways for synchronous discharges in the temporal lobe, though critical microcircuit-level detail is missing from this pathophysiological intuition. In particular, the relative contribution of adult-born (abGC) and mature (mGC) granule cells to epileptiform network events remains unknown. We assess dynamics of abGCs and mGCs during interictal epileptiform discharges (IEDs) in mice with TLE as well as sharp-wave ripples (SPW-Rs) in healthy mice, and find that abGCs and mGCs are desynchronized and differentially recruited by IEDs compared to SPW-Rs. We introduce a neural topic model to explain these observations, and find that epileptic DG networks organize into disjoint, cell-type specific pathological ensembles in which abGCs play an outsized role. Our results characterize identified GC subpopulation dynamics in TLE, and reveal a specific contribution of abGCs to IEDs.

Suggested Citation

  • F. T. Sparks & Z. Liao & W. Li & A. Grosmark & I. Soltesz & A. Losonczy, 2020. "Hippocampal adult-born granule cells drive network activity in a mouse model of chronic temporal lobe epilepsy," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19969-2
    DOI: 10.1038/s41467-020-19969-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19969-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19969-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    2. Jung Ho Hyun & Kenichiro Nagahama & Ho Namkung & Neymi Mignocchi & Seung-Eon Roh & Patrick Hannan & Sarah Krüssel & Chuljung Kwak & Abigail McElroy & Bian Liu & Mingguang Cui & Seunghwan Lee & Dongmin, 2022. "Tagging active neurons by soma-targeted Cal-Light," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19969-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.