IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19619-7.html
   My bibliography  Save this article

SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography

Author

Listed:
  • Steffen Klein

    (Heidelberg University
    Heidelberg University)

  • Mirko Cortese

    (Heidelberg University)

  • Sophie L. Winter

    (Heidelberg University
    Heidelberg University)

  • Moritz Wachsmuth-Melm

    (Heidelberg University
    Heidelberg University)

  • Christopher J. Neufeldt

    (Heidelberg University)

  • Berati Cerikan

    (Heidelberg University)

  • Megan L. Stanifer

    (Heidelberg University)

  • Steeve Boulant

    (Heidelberg University)

  • Ralf Bartenschlager

    (Heidelberg University
    German Cancer Research Center
    German Center for Infection Research (DZIF), (Heidelberg Partner Site))

  • Petr Chlanda

    (Heidelberg University
    Heidelberg University)

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID19 pandemic, is a highly pathogenic β-coronavirus. As other coronaviruses, SARS-CoV-2 is enveloped, replicates in the cytoplasm and assembles at intracellular membranes. Here, we structurally characterize the viral replication compartment and report critical insights into the budding mechanism of the virus, and the structure of extracellular virions close to their native state by in situ cryo-electron tomography and subtomogram averaging. We directly visualize RNA filaments inside the double membrane vesicles, compartments associated with viral replication. The RNA filaments show a diameter consistent with double-stranded RNA and frequent branching likely representing RNA secondary structures. We report that assembled S trimers in lumenal cisternae do not alone induce membrane bending but laterally reorganize on the envelope during virion assembly. The viral ribonucleoprotein complexes (vRNPs) are accumulated at the curved membrane characteristic for budding sites suggesting that vRNP recruitment is enhanced by membrane curvature. Subtomogram averaging shows that vRNPs are distinct cylindrical assemblies. We propose that the genome is packaged around multiple separate vRNP complexes, thereby allowing incorporation of the unusually large coronavirus genome into the virion while maintaining high steric flexibility between the vRNPs.

Suggested Citation

  • Steffen Klein & Mirko Cortese & Sophie L. Winter & Moritz Wachsmuth-Melm & Christopher J. Neufeldt & Berati Cerikan & Megan L. Stanifer & Steeve Boulant & Ralf Bartenschlager & Petr Chlanda, 2020. "SARS-CoV-2 structure and replication characterized by in situ cryo-electron tomography," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19619-7
    DOI: 10.1038/s41467-020-19619-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19619-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19619-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katelyn C. Cook & Elene Tsopurashvili & Jason M. Needham & Sunnie R. Thompson & Ileana M. Cristea, 2022. "Restructured membrane contacts rewire organelles for human cytomegalovirus infection," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    2. Liv Zimmermann & Xiaohan Zhao & Jana Makroczyova & Moritz Wachsmuth-Melm & Vibhu Prasad & Zach Hensel & Ralf Bartenschlager & Petr Chlanda, 2023. "SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Keisuke Tabata & Vibhu Prasad & David Paul & Ji-Young Lee & Minh-Tu Pham & Woan-Ing Twu & Christopher J. Neufeldt & Mirko Cortese & Berati Cerikan & Yannick Stahl & Sebastian Joecks & Cong Si Tran & C, 2021. "Convergent use of phosphatidic acid for hepatitis C virus and SARS-CoV-2 replication organelle formation," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Leonid Andronov & Mengting Han & Yanyu Zhu & Ashwin Balaji & Anish R. Roy & Andrew E. S. Barentine & Puja Patel & Jaishree Garhyan & Lei S. Qi & W. E. Moerner, 2024. "Nanoscale cellular organization of viral RNA and proteins in SARS-CoV-2 replication organelles," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Selma Dahmane & Adeline Kerviel & Dustin R. Morado & Kasturika Shankar & Björn Ahlman & Michael Lazarou & Nihal Altan-Bonnet & Lars-Anders Carlson, 2022. "Membrane-assisted assembly and selective secretory autophagy of enteroviruses," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    6. Scotland E. Farley & Jennifer E. Kyle & Hans C. Leier & Lisa M. Bramer & Jules B. Weinstein & Timothy A. Bates & Joon-Yong Lee & Thomas O. Metz & Carsten Schultz & Fikadu G. Tafesse, 2022. "A global lipid map reveals host dependency factors conserved across SARS-CoV-2 variants," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    7. Andreia L. Pinto & Ranjit K. Rai & Jonathan C. Brown & Paul Griffin & James R. Edgar & Anand Shah & Aran Singanayagam & Claire Hogg & Wendy S. Barclay & Clare E. Futter & Thomas Burgoyne, 2022. "Ultrastructural insight into SARS-CoV-2 entry and budding in human airway epithelium," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Francisco S. Mesquita & Laurence Abrami & Lucie Bracq & Nattawadee Panyain & Vincent Mercier & Béatrice Kunz & Audrey Chuat & Joana Carlevaro-Fita & Didier Trono & F. Gisou van der Goot, 2023. "SARS-CoV-2 hijacks a cell damage response, which induces transcription of a more efficient Spike S-acyltransferase," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. P. J. Schubert & R. Saxena & J. Kornfeld, 2024. "DeepFocus: fast focus and astigmatism correction for electron microscopy," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    10. Emilie Murigneux & Laurent Softic & Corentin Aubé & Carmen Grandi & Delphine Judith & Johanna Bruce & Morgane Le Gall & François Guillonneau & Alain Schmitt & Vincent Parissi & Clarisse Berlioz-Torren, 2024. "Proteomic analysis of SARS-CoV-2 particles unveils a key role of G3BP proteins in viral assembly," Nature Communications, Nature, vol. 15(1), pages 1-17, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19619-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.