IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19525-y.html
   My bibliography  Save this article

Author Correction: High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode

Author

Listed:
  • Hao Tian

    (University of Technology Sydney
    Chinese Academy of Sciences)

  • Huajun Tian

    (University of Technology Sydney)

  • Shijian Wang

    (University of Technology Sydney)

  • Shuangming Chen

    (University of Science and Technology of China)

  • Fan Zhang

    (University of Technology Sydney)

  • Li Song

    (University of Science and Technology of China)

  • Hao Liu

    (University of Technology Sydney)

  • Jian Liu

    (Chinese Academy of Sciences
    University of Surrey)

  • Guoxiu Wang

    (University of Technology Sydney)

Abstract

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

Suggested Citation

  • Hao Tian & Huajun Tian & Shijian Wang & Shuangming Chen & Fan Zhang & Li Song & Hao Liu & Jian Liu & Guoxiu Wang, 2020. "Author Correction: High-power lithium–selenium batteries enabled by atomic cobalt electrocatalyst in hollow carbon cathode," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19525-y
    DOI: 10.1038/s41467-020-19525-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19525-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19525-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Mechili & Christos Vaitsis & Nikolaos Argirusis & Pavlos K. Pandis & Georgia Sourkouni & Antonis A. Zorpas & Christos Argirusis, 2022. "Research Progress in Metal-Organic Framework Based Nanomaterials Applied in Battery Cathodes," Energies, MDPI, vol. 15(15), pages 1-30, July.
    2. Kangkang Sun & Hongbin Shan & Helfried Neumann & Guo-Ping Lu & Matthias Beller, 2022. "Efficient iron single-atom catalysts for selective ammoxidation of alcohols to nitriles," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Li, Qingmeng & Han, Ning & Chai, Jiali & Zhang, Wei & Du, Jiakai & Tian, Hao & Liu, Hao & Wang, Guoxiu & Tang, Bohejin, 2023. "Strategies to improve metal-organic frameworks and their derived oxides as lithium storage anode materials," Energy, Elsevier, vol. 282(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19525-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.