IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19497-z.html
   My bibliography  Save this article

Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation

Author

Listed:
  • Jinzhe Zeng

    (East China Normal University)

  • Liqun Cao

    (East China Normal University)

  • Mingyuan Xu

    (East China Normal University)

  • Tong Zhu

    (East China Normal University
    NYU-ECNU Center for Computational Chemistry at NYU Shanghai)

  • John Z. H. Zhang

    (East China Normal University
    NYU-ECNU Center for Computational Chemistry at NYU Shanghai
    New York University
    Shanxi University, Taiyuan)

Abstract

Combustion is a complex chemical system which involves thousands of chemical reactions and generates hundreds of molecular species and radicals during the process. In this work, a neural network-based molecular dynamics (MD) simulation is carried out to simulate the benchmark combustion of methane. During MD simulation, detailed reaction processes leading to the creation of specific molecular species including various intermediate radicals and the products are intimately revealed and characterized. Overall, a total of 798 different chemical reactions were recorded and some new chemical reaction pathways were discovered. We believe that the present work heralds the dawn of a new era in which neural network-based reactive MD simulation can be practically applied to simulating important complex reaction systems at ab initio level, which provides atomic-level understanding of chemical reaction processes as well as discovery of new reaction pathways at an unprecedented level of detail beyond what laboratory experiments could accomplish.

Suggested Citation

  • Jinzhe Zeng & Liqun Cao & Mingyuan Xu & Tong Zhu & John Z. H. Zhang, 2020. "Complex reaction processes in combustion unraveled by neural network-based molecular dynamics simulation," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19497-z
    DOI: 10.1038/s41467-020-19497-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19497-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19497-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xueyan & Tian, Hua & Shu, Gequn & Yang, Zhao, 2024. "Study on flammability limit and combustion reactions behaviors of R744/R152a environmentally friendly mixed working fluid by experiments and molecular dynamic simulation," Energy, Elsevier, vol. 304(C).
    2. Shuai Jiang & Yi-Rong Liu & Teng Huang & Ya-Juan Feng & Chun-Yu Wang & Zhong-Quan Wang & Bin-Jing Ge & Quan-Sheng Liu & Wei-Ran Guang & Wei Huang, 2022. "Towards fully ab initio simulation of atmospheric aerosol nucleation," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Hanwen Zhang & Veronika Juraskova & Fernanda Duarte, 2024. "Modelling chemical processes in explicit solvents with machine learning potentials," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Jing Wu & E Zhou & An Huang & Hongbin Zhang & Ming Hu & Guangzhao Qin, 2024. "Deep-potential enabled multiscale simulation of gallium nitride devices on boron arsenide cooling substrates," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Jonathan Vandermause & Yu Xie & Jin Soo Lim & Cameron J. Owen & Boris Kozinsky, 2022. "Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Sunghwan Choi, 2023. "Prediction of transition state structures of gas-phase chemical reactions via machine learning," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19497-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.