IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19132-x.html
   My bibliography  Save this article

Gene duplication drives genome expansion in a major lineage of Thaumarchaeota

Author

Listed:
  • Paul O. Sheridan

    (University of Aberdeen
    University of Bristol)

  • Sebastien Raguideau

    (University of Warwick)

  • Christopher Quince

    (University of Warwick
    Earlham Institute
    Quadram Institute)

  • Jennifer Holden

    (University of Warwick)

  • Lihong Zhang

    (University of Exeter)

  • Tom A. Williams

    (University of Bristol)

  • Cécile Gubry-Rangin

    (University of Aberdeen)

Abstract

Ammonia-oxidising archaea of the phylum Thaumarchaeota are important organisms in the nitrogen cycle, but the mechanisms driving their radiation into diverse ecosystems remain underexplored. Here, existing thaumarchaeotal genomes are complemented with 12 genomes belonging to the previously under-sampled Nitrososphaerales to investigate the impact of lateral gene transfer (LGT), gene duplication and loss across thaumarchaeotal evolution. We reveal a major role for gene duplication in driving genome expansion subsequent to early LGT. In particular, two large LGT events are identified into Nitrososphaerales and the fate of these gene families is highly lineage-specific, being lost in some descendant lineages, but undergoing extensive duplication in others, suggesting niche-specific roles. Notably, some genes involved in carbohydrate transport or coenzyme metabolism were duplicated, likely facilitating niche specialisation in soils and sediments. Overall, our results suggest that LGT followed by gene duplication drives Nitrososphaerales evolution, highlighting a previously under-appreciated mechanism of genome expansion in archaea.

Suggested Citation

  • Paul O. Sheridan & Sebastien Raguideau & Christopher Quince & Jennifer Holden & Lihong Zhang & Tom A. Williams & Cécile Gubry-Rangin, 2020. "Gene duplication drives genome expansion in a major lineage of Thaumarchaeota," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19132-x
    DOI: 10.1038/s41467-020-19132-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19132-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19132-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul O. Sheridan & Yiyu Meng & Tom A. Williams & Cécile Gubry-Rangin, 2023. "Genomics of soil depth niche partitioning in the Thaumarchaeota family Gagatemarchaeaceae," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Paul O. Sheridan & Yiyu Meng & Tom A. Williams & Cécile Gubry-Rangin, 2022. "Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota," Nature Communications, Nature, vol. 13(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19132-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.