IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-19115-y.html
   My bibliography  Save this article

Mechanisms of telomerase inhibition by oxidized and therapeutic dNTPs

Author

Listed:
  • Samantha L. Sanford

    (University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center)

  • Griffin A. Welfer

    (University of Kansas Medical Center)

  • Bret D. Freudenthal

    (University of Kansas Medical Center)

  • Patricia L. Opresko

    (University of Pittsburgh Graduate School of Public Health and UPMC Hillman Cancer Center
    Carnegie Mellon University)

Abstract

Telomerase is a specialized reverse transcriptase that adds GGTTAG repeats to chromosome ends and is upregulated in most human cancers to enable limitless proliferation. Here, we uncover two distinct mechanisms by which naturally occurring oxidized dNTPs and therapeutic dNTPs inhibit telomerase-mediated telomere elongation. We conduct a series of direct telomerase extension assays in the presence of modified dNTPs on various telomeric substrates. We provide direct evidence that telomerase can add the nucleotide reverse transcriptase inhibitors ddITP and AZT-TP to the telomeric end, causing chain termination. In contrast, telomerase continues elongation after inserting oxidized 2-OH-dATP or therapeutic 6-thio-dGTP, but insertion disrupts translocation and inhibits further repeat addition. Kinetics reveal that telomerase poorly selects against 6-thio-dGTP, inserting with similar catalytic efficiency as dGTP. Furthermore, telomerase processivity factor POT1-TPP1 fails to restore processive elongation in the presence of inhibitory dNTPs. These findings reveal mechanisms for targeting telomerase with modified dNTPs in cancer therapy.

Suggested Citation

  • Samantha L. Sanford & Griffin A. Welfer & Bret D. Freudenthal & Patricia L. Opresko, 2020. "Mechanisms of telomerase inhibition by oxidized and therapeutic dNTPs," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19115-y
    DOI: 10.1038/s41467-020-19115-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-19115-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-19115-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhusheng Huang & Rong Gu & Shiqian Huang & Qian Chen & Jing Yan & Xiaoya Cui & Haojie Jiang & Dan Yao & Chuang Shen & Jiayue Su & Tao Liu & Jinhui Wu & Zhimin Luo & Yiqiao Hu & Ahu Yuan, 2024. "Chiral coordination polymer nanowires boost radiation-induced in situ tumor vaccination," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-19115-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.