IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18866-y.html
   My bibliography  Save this article

CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae

Author

Listed:
  • Sara J. Weaver

    (California Institute of Technology
    University of California Los Angeles)

  • Davi R. Ortega

    (California Institute of Technology)

  • Matthew H. Sazinsky

    (Pomona College)

  • Triana N. Dalia

    (Indiana University)

  • Ankur B. Dalia

    (Indiana University)

  • Grant J. Jensen

    (California Institute of Technology)

Abstract

Natural transformation is the process by which bacteria take up genetic material from their environment and integrate it into their genome by homologous recombination. It represents one mode of horizontal gene transfer and contributes to the spread of traits like antibiotic resistance. In Vibrio cholerae, a type IVa pilus (T4aP) is thought to facilitate natural transformation by extending from the cell surface, binding to exogenous DNA, and retracting to thread this DNA through the outer membrane secretin, PilQ. Here, we use a functional tagged allele of VcPilQ purified from native V. cholerae cells to determine the cryoEM structure of the VcPilQ secretin in amphipol to ~2.7 Å. We use bioinformatics to examine the domain architecture and gene neighborhood of T4aP secretins in Proteobacteria in comparison with VcPilQ. This structure highlights differences in the architecture of the T4aP secretin from the type II and type III secretion system secretins. Based on our cryoEM structure, we design a series of mutants to reversibly regulate VcPilQ gate dynamics. These experiments support the idea of VcPilQ as a potential druggable target and provide insight into the channel that DNA likely traverses to promote the spread of antibiotic resistance via horizontal gene transfer by natural transformation.

Suggested Citation

  • Sara J. Weaver & Davi R. Ortega & Matthew H. Sazinsky & Triana N. Dalia & Ankur B. Dalia & Grant J. Jensen, 2020. "CryoEM structure of the type IVa pilus secretin required for natural competence in Vibrio cholerae," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18866-y
    DOI: 10.1038/s41467-020-18866-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18866-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18866-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuaiqi Guo & Yunjie Chang & Yves V. Brun & P. Lynne Howell & Lori L. Burrows & Jun Liu, 2024. "PilY1 regulates the dynamic architecture of the type IV pilus machine in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    2. Sebastian A. G. Braus & Francesca L. Short & Stefanie Holz & Matthew J. M. Stedman & Alvar D. Gossert & Manuela K. Hospenthal, 2022. "The molecular basis of FimT-mediated DNA uptake during bacterial natural transformation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Rebecca Conners & Mathew McLaren & Urszula Łapińska & Kelly Sanders & M. Rhia L. Stone & Mark A. T. Blaskovich & Stefano Pagliara & Bertram Daum & Jasna Rakonjac & Vicki A. M. Gold, 2021. "CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Matteo Tassinari & Marta Rudzite & Alain Filloux & Harry H. Low, 2023. "Assembly mechanism of a Tad secretion system secretin-pilotin complex," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18866-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.