IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18535-0.html
   My bibliography  Save this article

Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes

Author

Listed:
  • Jiani Qin

    (Ben-Gurion University of the Negev)

  • Jesús Barrio

    (Ben-Gurion University of the Negev)

  • Guiming Peng

    (Ben-Gurion University of the Negev)

  • Jonathan Tzadikov

    (Ben-Gurion University of the Negev)

  • Liel Abisdris

    (Ben-Gurion University of the Negev)

  • Michael Volokh

    (Ben-Gurion University of the Negev)

  • Menny Shalom

    (Ben-Gurion University of the Negev)

Abstract

A general synthesis of carbon nitride (CN) films with extended optical absorption, excellent charge separation under illumination, and outstanding performance as a photoanode in water-splitting photoelectrochemical cells is reported. To this end, we introduced a universal method to rapidly grow CN monomers directly from a hot saturated solution on various substrates. Upon calcination, a highly uniform carbon nitride layer with tuned structural and photophysical properties and in intimate contact with the substrate is obtained. Detailed photoelectrochemical and structural studies reveal good photoresponse up to 600 nm, excellent hole extraction efficiency (up to 62%) and strong adhesion of the CN layer to the substrate. The best CN photoanode demonstrates a benchmark-setting photocurrent density of 353 µA cm−2 (51% faradaic efficiency for oxygen), and external quantum yield value above 12% at 450 nm at 1.23 V versus RHE in an alkaline solution, as well as low onset potential and good stability.

Suggested Citation

  • Jiani Qin & Jesús Barrio & Guiming Peng & Jonathan Tzadikov & Liel Abisdris & Michael Volokh & Menny Shalom, 2020. "Direct growth of uniform carbon nitride layers with extended optical absorption towards efficient water-splitting photoanodes," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18535-0
    DOI: 10.1038/s41467-020-18535-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18535-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18535-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junfang Zhang & Yuntao Zhu & Christian Njel & Yuxin Liu & Pietro Dallabernardina & Molly M. Stevens & Peter H. Seeberger & Oleksandr Savateev & Felix F. Loeffler, 2023. "Metal-free photoanodes for C–H functionalization," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yang Wang & Tingting Lian & Nadezda V. Tarakina & Jiayin Yuan & Markus Antonietti, 2022. "Lamellar carbon nitride membrane for enhanced ion sieving and water desalination," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18535-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.