IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18214-0.html
   My bibliography  Save this article

Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics

Author

Listed:
  • Shuai Wang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yang Gao

    (The Hong Kong Polytechnic University, Hung Hom
    The Hong Kong Polytechnic University Shenzhen Research Institute)

  • Anran Wei

    (The Hong Kong Polytechnic University, Hung Hom)

  • Peng Xiao

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yun Liang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Wei Lu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Chinyin Chen

    (Chinese Academy of Sciences)

  • Chi Zhang

    (Chinese Academy of Sciences)

  • Guilin Yang

    (Chinese Academy of Sciences)

  • Haimin Yao

    (The Hong Kong Polytechnic University, Hung Hom
    The Hong Kong Polytechnic University Shenzhen Research Institute)

  • Tao Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

There is ever-increasing interest yet grand challenge in developing programmable untethered soft robotics. Here we address this challenge by applying the asymmetric elastoplasticity of stacked graphene assembly (SGA) under tension and compression. We transfer the SGA onto a polyethylene (PE) film, the resulting SGA/PE bilayer exhibits swift morphing behavior in response to the variation of the surrounding temperature. With the applications of patterned SGA and/or localized tempering pretreatment, the initial configurations of such thermal-induced morphing systems can also be programmed as needed, resulting in diverse actuation systems with sophisticated three-dimensional structures. More importantly, unlike the normal bilayer actuators, our SGA/PE bilayer, after a constrained tempering process, will spontaneously curl into a roll, which can achieve rolling locomotion under infrared lighting, yielding an untethered light-driven motor. The asymmetric elastoplasticity of SGA endows the SGA-based bi-materials with great application promise in developing untethered soft robotics with high configurational programmability.

Suggested Citation

  • Shuai Wang & Yang Gao & Anran Wei & Peng Xiao & Yun Liang & Wei Lu & Chinyin Chen & Chi Zhang & Guilin Yang & Haimin Yao & Tao Chen, 2020. "Asymmetric elastoplasticity of stacked graphene assembly actualizes programmable untethered soft robotics," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18214-0
    DOI: 10.1038/s41467-020-18214-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18214-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18214-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dan Wang & Zhaomin Chen & Mingtong Li & Zhen Hou & Changsong Zhan & Qijun Zheng & Dalei Wang & Xin Wang & Mengjiao Cheng & Wenqi Hu & Bin Dong & Feng Shi & Metin Sitti, 2023. "Bioinspired rotary flight of light-driven composite films," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Xinchen Ni & Haiwen Luan & Jin-Tae Kim & Sam I. Rogge & Yun Bai & Jean Won Kwak & Shangliangzi Liu & Da Som Yang & Shuo Li & Shupeng Li & Zhengwei Li & Yamin Zhang & Changsheng Wu & Xiaoyue Ni & Yongg, 2022. "Soft shape-programmable surfaces by fast electromagnetic actuation of liquid metal networks," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18214-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.