IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-18054-y.html
   My bibliography  Save this article

TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis

Author

Listed:
  • Sneha Damal Villivalam

    (University of California Berkeley)

  • Dongjoo You

    (University of California Berkeley)

  • Jinse Kim

    (University of California Berkeley)

  • Hee Woong Lim

    (University of Cincinnati)

  • Han Xiao

    (University of California Berkeley)

  • Pete-James H. Zushin

    (University of California Berkeley)

  • Yasuo Oguri

    (University of California)

  • Pouya Amin

    (University of California Berkeley)

  • Sona Kang

    (University of California Berkeley)

Abstract

It has been suggested that beige fat thermogenesis is tightly controlled by epigenetic regulators that sense environmental cues such as temperature. Here, we report that subcutaneous adipose expression of the DNA demethylase TET1 is suppressed by cold and other stimulators of beige adipocyte thermogenesis. TET1 acts as an autonomous repressor of key thermogenic genes, including Ucp1 and Ppargc1a, in beige adipocytes. Adipose-selective Tet1 knockout mice generated by using Fabp4-Cre improves cold tolerance and increases energy expenditure and protects against diet-induced obesity and insulin resistance. Moreover, the suppressive role of TET1 in the thermogenic gene regulation of beige adipocytes is largely DNA demethylase-independent. Rather, TET1 coordinates with HDAC1 to mediate the epigenetic changes to suppress thermogenic gene transcription. Taken together, TET1 is a potent beige-selective epigenetic breaker of the thermogenic gene program. Our findings may lead to a therapeutic strategy to increase energy expenditure in obesity and related metabolic disorders.

Suggested Citation

  • Sneha Damal Villivalam & Dongjoo You & Jinse Kim & Hee Woong Lim & Han Xiao & Pete-James H. Zushin & Yasuo Oguri & Pouya Amin & Sona Kang, 2020. "TET1 is a beige adipocyte-selective epigenetic suppressor of thermogenesis," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18054-y
    DOI: 10.1038/s41467-020-18054-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-18054-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-18054-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liam McAllan & Damir Baranasic & Sergio Villicaña & Scarlett Brown & Weihua Zhang & Benjamin Lehne & Marco Adamo & Andrew Jenkinson & Mohamed Elkalaawy & Borzoueh Mohammadi & Majid Hashemi & Nadia Fer, 2023. "Integrative genomic analyses in adipocytes implicate DNA methylation in human obesity and diabetes," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Hongrui Wang & Liang Yu & Jin’e Wang & Yaqing Zhang & Mengchen Xu & Cheng Lv & Bing Cui & Mengmeng Yuan & Yu Zhang & Yupeng Yan & Rutai Hui & Yibo Wang, 2023. "SLC35D3 promotes white adipose tissue browning to ameliorate obesity by NOTCH signaling," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    3. Yangmian Yuan & Yu Fan & Yihao Zhou & Rong Qiu & Wei Kang & Yu Liu & Yuchen Chen & Chenyu Wang & Jiajian Shi & Chengyu Liu & Yangkai Li & Min Wu & Kun Huang & Yong Liu & Ling Zheng, 2023. "Linker histone variant H1.2 is a brake on white adipose tissue browning," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-18054-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.